|
Volumn 27, Issue 1, 2005, Pages 136-141
|
On utilizing search methods to select subspace dimensions for Kernel-Based nonlinear subspace classifiers
|
Author keywords
Kernel principal component analysis (kPCA); Kernel based nonlinear subspace (KNS) classifier; State space search algorithms; Subspace dimension selections
|
Indexed keywords
ALGORITHMS;
APPROXIMATION THEORY;
EIGENVALUES AND EIGENFUNCTIONS;
HEURISTIC METHODS;
MATRIX ALGEBRA;
PRINCIPAL COMPONENT ANALYSIS;
STATE SPACE METHODS;
KERNEL BASED NONLINEAR SUBSPACE (KNS) CLASSIFIER;
KERNEL PRINCIPAL COMPONENT ANALYSIS (KPCA);
STATE SPACE SEARCH ALGORITHMS;
SUBSPACE DIMENSION SELECTIONS;
PATTERN RECOGNITION;
ALGORITHM;
ARTICLE;
ARTIFICIAL INTELLIGENCE;
AUTOMATED PATTERN RECOGNITION;
BIOLOGICAL MODEL;
CLUSTER ANALYSIS;
COMPARATIVE STUDY;
COMPUTER ASSISTED DIAGNOSIS;
COMPUTER SIMULATION;
EVALUATION;
HEART ARRHYTHMIA;
HUMAN;
IMAGE ENHANCEMENT;
INFORMATION RETRIEVAL;
MATHEMATICAL COMPUTING;
METHODOLOGY;
NONLINEAR SYSTEM;
REPRODUCIBILITY;
SENSITIVITY AND SPECIFICITY;
STATISTICAL MODEL;
ALGORITHMS;
ARRHYTHMIA;
ARTIFICIAL INTELLIGENCE;
CLUSTER ANALYSIS;
COMPUTER SIMULATION;
DIAGNOSIS, COMPUTER-ASSISTED;
HUMANS;
IMAGE ENHANCEMENT;
INFORMATION STORAGE AND RETRIEVAL;
MODELS, BIOLOGICAL;
MODELS, STATISTICAL;
NONLINEAR DYNAMICS;
NUMERICAL ANALYSIS, COMPUTER-ASSISTED;
PATTERN RECOGNITION, AUTOMATED;
REPRODUCIBILITY OF RESULTS;
SENSITIVITY AND SPECIFICITY;
|
EID: 13344282709
PISSN: 01628828
EISSN: None
Source Type: Journal
DOI: 10.1109/TPAMI.2005.15 Document Type: Article |
Times cited : (22)
|
References (21)
|