메뉴 건너뛰기




Volumn 186, Issue 2, 2005, Pages 154-177

Spatial residual analysis of six modeling techniques

Author keywords

Generalized additive model (GAM); Linear mixed model (LMM); Local indicator of spatial autocorrelation (LISA); Multi layer perceptron (MLP) neural network; Ordinary least squares (OLS); Radial basis function (RBF) neural network; Spatial autocorrelation

Indexed keywords

CORRELATION METHODS; FORESTRY; LEAST SQUARES APPROXIMATIONS; MATHEMATICAL MODELS; MULTILAYER NEURAL NETWORKS; RADIAL BASIS FUNCTION NETWORKS; REGRESSION ANALYSIS; SPATIAL VARIABLES MEASUREMENT;

EID: 21344459257     PISSN: 03043800     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ecolmodel.2005.01.007     Document Type: Article
Times cited : (130)

References (55)
  • 1
    • 0037446358 scopus 로고    scopus 로고
    • Evaluating predictive models of species distributions: Criteria for selecting optimal models
    • R.P. Anderson, D. Lew, and A.T. Peterson Evaluating predictive models of species distributions: criteria for selecting optimal models Ecol. Model. 162 2003 211 232
    • (2003) Ecol. Model. , vol.162 , pp. 211-232
    • Anderson, R.P.1    Lew, D.2    Peterson, A.T.3
  • 2
    • 0029507498 scopus 로고
    • Local indicator of spatial association - LISA
    • L. Anselin Local indicator of spatial association - LISA Geog. Anal. 27 1995 93 115
    • (1995) Geog. Anal. , vol.27 , pp. 93-115
    • Anselin, L.1
  • 3
    • 0024185906 scopus 로고
    • Do spatial effects really matter in regression analysis
    • L. Anselin, and D.A. Griffith Do spatial effects really matter in regression analysis Pap. Reg. Sci. Assoc. 65 1988 11 34
    • (1988) Pap. Reg. Sci. Assoc. , vol.65 , pp. 11-34
    • Anselin, L.1    Griffith, D.A.2
  • 4
    • 0037202447 scopus 로고    scopus 로고
    • Spatial prediction of species distribution: An interface between ecological theory and statistical modeling
    • M.P. Austin Spatial prediction of species distribution: an interface between ecological theory and statistical modeling Ecol. Model. 157 2002 101 118
    • (2002) Ecol. Model. , vol.157 , pp. 101-118
    • Austin, M.P.1
  • 5
    • 0030236493 scopus 로고    scopus 로고
    • Current approaches to modeling the environmental niche of eucalypts: Implication for management of forest biodiversity
    • M.P. Austin, and J.A. Meyers Current approaches to modeling the environmental niche of eucalypts: implication for management of forest biodiversity For. Ecol. Manage. 85 1996 95 106
    • (1996) For. Ecol. Manage. , vol.85 , pp. 95-106
    • Austin, M.P.1    Meyers, J.A.2
  • 6
    • 0036303285 scopus 로고    scopus 로고
    • Local measures of spatial association
    • B. Boots Local measures of spatial association EcoScience 9 2002 168 176
    • (2002) EcoScience , vol.9 , pp. 168-176
    • Boots, B.1
  • 7
    • 0001182913 scopus 로고    scopus 로고
    • Geographically weighted regression - Modeling spatial non-stationary
    • C.A. Brunsdon, A.S. Fotheringham, and M.E. Charlton Geographically weighted regression - modeling spatial non-stationary Statistician 47 1998 431 443
    • (1998) Statistician , vol.47 , pp. 431-443
    • Brunsdon, C.A.1    Fotheringham, A.S.2    Charlton, M.E.3
  • 9
    • 0036303269 scopus 로고    scopus 로고
    • Spatial autocorrelation and statistical tests in ecology
    • M.R. Dale, and M.-J. Fortin Spatial autocorrelation and statistical tests in ecology EcoScience 9 2002 162 167
    • (2002) EcoScience , vol.9 , pp. 162-167
    • Dale, M.R.1    Fortin, M.-J.2
  • 11
    • 0032458753 scopus 로고    scopus 로고
    • Computational neural networks: A new paradigm for spatial analysis
    • M.M. Fischer Computational neural networks: a new paradigm for spatial analysis Environ. Plan. A 29 1997 1873 1891
    • (1997) Environ. Plan. a , vol.29 , pp. 1873-1891
    • Fischer, M.M.1
  • 12
    • 0842306347 scopus 로고    scopus 로고
    • Geographical weighting as a further refinement to regression modeling: An example focused on the NDVI-rainfall relationship
    • G.M. Foody Geographical weighting as a further refinement to regression modeling: an example focused on the NDVI-rainfall relationship Remo. Sens. Environ. 88 2003 283 293
    • (2003) Remo. Sens. Environ. , vol.88 , pp. 283-293
    • Foody, G.M.1
  • 14
    • 0035889514 scopus 로고    scopus 로고
    • Stochastic structure and individual-tree growth models
    • J.C. Fox, P.K. Ades, and H. Bi Stochastic structure and individual-tree growth models For. Ecol. Manage. 154 2001 261 276
    • (2001) For. Ecol. Manage. , vol.154 , pp. 261-276
    • Fox, J.C.1    Ades, P.K.2    Bi, H.3
  • 15
    • 0034923205 scopus 로고    scopus 로고
    • Modeling spatially explicit forest structure attributes using generalized additive models
    • T.S. Frescino, T.C. Edwards Jr., and G.G. Moisen Modeling spatially explicit forest structure attributes using generalized additive models J. Veg. Sci. 12 2001 15 26
    • (2001) J. Veg. Sci. , vol.12 , pp. 15-26
    • Frescino, T.S.1    Edwards Jr., T.C.2    Moisen, G.G.3
  • 16
    • 0028974985 scopus 로고
    • Linear modeling of irregular spaced, unbalanced, longitudinal data from permanent-plot measurements
    • T.G. Gregoire, O. Schabenberger, and J.P. Barrett Linear modeling of irregular spaced, unbalanced, longitudinal data from permanent-plot measurements Can. J. For. Res. 25 1995 137 156
    • (1995) Can. J. For. Res. , vol.25 , pp. 137-156
    • Gregoire, T.G.1    Schabenberger, O.2    Barrett, J.P.3
  • 17
    • 0034610199 scopus 로고    scopus 로고
    • Predictive habitat distribution models in ecology
    • A. Guisan, and N.E. Zimmermann Predictive habitat distribution models in ecology Ecol. Model. 135 2000 147 186
    • (2000) Ecol. Model. , vol.135 , pp. 147-186
    • Guisan, A.1    Zimmermann, N.E.2
  • 18
    • 0037202446 scopus 로고    scopus 로고
    • Generalized linear and generalized additive models in studies of species distributions: Setting the scene
    • A. Guisan, T.C. Edwards Jr., and T. Hastie Generalized linear and generalized additive models in studies of species distributions: setting the scene Ecol. Model. 157 2002 89 100
    • (2002) Ecol. Model. , vol.157 , pp. 89-100
    • Guisan, A.1    Edwards Jr., T.C.2    Hastie, T.3
  • 19
    • 0035916092 scopus 로고    scopus 로고
    • Spatial prediction of tree and shrub succession in a small watershed in Northern Cape Breton Island, Nova Scotia
    • J.J. Gullison, and C.P.A. Bourque Spatial prediction of tree and shrub succession in a small watershed in Northern Cape Breton Island, Nova Scotia Ecol. Model. 137 2001 181 199
    • (2001) Ecol. Model. , vol.137 , pp. 181-199
    • Gullison, J.J.1    Bourque, C.P.A.2
  • 23
    • 0343487687 scopus 로고    scopus 로고
    • Geostatistics in evaluating forest damage surveys: Considerations on methods for describing spatial distributions
    • M. Kohl, and G. Gertner Geostatistics in evaluating forest damage surveys: considerations on methods for describing spatial distributions For. Ecol. Manage. 95 1997 131 140
    • (1997) For. Ecol. Manage. , vol.95 , pp. 131-140
    • Kohl, M.1    Gertner, G.2
  • 24
    • 0043251828 scopus 로고    scopus 로고
    • MIT Lincoln Laboratory.
    • Kukoloch, L., Lippmann, R., 1999. LNKnet User's Guide, MIT Lincoln Laboratory. (The software and the manual can be downloaded at http://www.ll.mit.edu/IST.)
    • (1999) LNKnet User's Guide
    • Kukoloch, L.1    Lippmann, R.2
  • 25
    • 0010884370 scopus 로고    scopus 로고
    • Spatially assessing model error using geographically weighted regression
    • Laffan, S.W., 1999. Spatially assessing model error using geographically weighted regression. GeoComputation 99. Available at http://www.geocomputation. org/1999/086/gc_086.htm.
    • (1999) GeoComputation , vol.99
    • Laffan, S.W.1
  • 27
    • 0031754674 scopus 로고    scopus 로고
    • GIS modeling of submerged macrophyte distribution using generalized additive models
    • A. Lehmann GIS modeling of submerged macrophyte distribution using generalized additive models Plant Ecol. 139 1998 113 124
    • (1998) Plant Ecol. , vol.139 , pp. 113-124
    • Lehmann, A.1
  • 28
    • 0242276377 scopus 로고    scopus 로고
    • GRASP: Generalized regression analysis and spatial prediction
    • A. Lehmann, J.McC. Overton, and J.R. Leathwick GRASP: generalized regression analysis and spatial prediction Ecol. Model. 160 2003 165 183
    • (2003) Ecol. Model. , vol.160 , pp. 165-183
    • Lehmann, A.1    Overton, J.McC.2    Leathwick, J.R.3
  • 29
    • 0344604541 scopus 로고    scopus 로고
    • Artificial neural networks as a tool in ecological modeling
    • S. Lek, and J.F. Guegan Artificial neural networks as a tool in ecological modeling Ecol. Model. 120 1999 65 73
    • (1999) Ecol. Model. , vol.120 , pp. 65-73
    • Lek, S.1    Guegan, J.F.2
  • 30
    • 0023331258 scopus 로고
    • An introduction to computing with neural nets
    • R.P. Lippmann An introduction to computing with neural nets IEEE ASSP Mag. 1987 April 4-22
    • (1987) IEEE ASSP Mag.
    • Lippmann, R.P.1
  • 32
    • 0035568382 scopus 로고    scopus 로고
    • FRBF: A fuzzy radial basis function network
    • S. Mitra, and J. Basak FRBF: a fuzzy radial basis function network Neural Comp. Appl. 10 2001 244 252
    • (2001) Neural Comp. Appl. , vol.10 , pp. 244-252
    • Mitra, S.1    Basak, J.2
  • 33
    • 0004496329 scopus 로고    scopus 로고
    • Use of generalized linear models and digital data in a forest inventory of northern Utah
    • G.G. Moisen, and T.C. Edwards Jr. Use of generalized linear models and digital data in a forest inventory of northern Utah J. Agric. Biol. Environ. Stat. 4 1999 372 390
    • (1999) J. Agric. Biol. Environ. Stat. , vol.4 , pp. 372-390
    • Moisen, G.G.1    Edwards Jr., T.C.2
  • 34
    • 0037202445 scopus 로고    scopus 로고
    • Comparing five modeling techniques for predicting forest characteristics
    • G.G. Moisen, and T.S. Frescino Comparing five modeling techniques for predicting forest characteristics Ecol. Model. 157 2002 209 225
    • (2002) Ecol. Model. , vol.157 , pp. 209-225
    • Moisen, G.G.1    Frescino, T.S.2
  • 36
    • 0032773999 scopus 로고    scopus 로고
    • Exploring spatial non-stationarity with radial basis function neural networks
    • S. Murnion Exploring spatial non-stationarity with radial basis function neural networks Geo. Environ. Model. 3 1999 35 45
    • (1999) Geo. Environ. Model. , vol.3 , pp. 35-45
    • Murnion, S.1
  • 37
    • 0038178139 scopus 로고    scopus 로고
    • Spatial autocorrelation in multi-scale land use models
    • K.P. Overmars, G.H.J. de Koning, and A. Veldkamp Spatial autocorrelation in multi-scale land use models Ecol. Model. 164 2003 257 270
    • (2003) Ecol. Model. , vol.164 , pp. 257-270
    • Overmars, K.P.1    De Koning, G.H.J.2    Veldkamp, A.3
  • 38
    • 0030891652 scopus 로고    scopus 로고
    • Regression methods for spatially correlated data: An example using beetle attacks in a seed orchard
    • H.K. Preisler, N.G. Rappaport, and D.L. Wood Regression methods for spatially correlated data: an example using beetle attacks in a seed orchard For. Sci. 43 1997 71 77
    • (1997) For. Sci. , vol.43 , pp. 71-77
    • Preisler, H.K.1    Rappaport, N.G.2    Wood, D.L.3
  • 39
    • 0032789753 scopus 로고    scopus 로고
    • Environmental correlates of species richness for native freshwater fish in Oregon, USA
    • D. Rathert, D. White, J.C. Sifneos, and R.M. Hughes Environmental correlates of species richness for native freshwater fish in Oregon, USA J. Biogeog. 26 1999 1 17
    • (1999) J. Biogeog. , vol.26 , pp. 1-17
    • Rathert, D.1    White, D.2    Sifneos, J.C.3    Hughes, R.M.4
  • 40
    • 0038178231 scopus 로고    scopus 로고
    • Comparing models for predicting species' potential distributions: A case study using correlative and mechanistic predictive modeling techniques
    • M.P. Robertson, C.I. Peter, M.H. Villet, and B.S. Ripley Comparing models for predicting species' potential distributions: a case study using correlative and mechanistic predictive modeling techniques Ecol. Model. 164 2003 153 167
    • (2003) Ecol. Model. , vol.164 , pp. 153-167
    • Robertson, M.P.1    Peter, C.I.2    Villet, M.H.3    Ripley, B.S.4
  • 43
    • 0004282518 scopus 로고    scopus 로고
    • SAS Institute, Inc., Cary, NC.
    • SAS Institute, Inc., 2002. SAS/STAT Users' guide. Version 9.0. SAS Institute, Inc., Cary, NC.
    • (2002) SAS/STAT Users' Guide. Version 9.0
  • 45
    • 0348011428 scopus 로고    scopus 로고
    • Local analysis of tree competition and growth
    • H. Shi, and L. Zhang Local analysis of tree competition and growth For. Sci. 49 2003 938 955
    • (2003) For. Sci. , vol.49 , pp. 938-955
    • Shi, H.1    Zhang, L.2
  • 46
    • 0034205618 scopus 로고    scopus 로고
    • Empirical data modeling in software engineering using radial basis functions
    • M. Shin, and A.L. Goel Empirical data modeling in software engineering using radial basis functions IEEE Trans. Soft. Eng. 26 2000 1 10
    • (2000) IEEE Trans. Soft. Eng. , vol.26 , pp. 1-10
    • Shin, M.1    Goel, A.L.2
  • 47
    • 0032465662 scopus 로고    scopus 로고
    • Local spatial autocorrelation in a biological model
    • R.R. Sokal, N.L. Oden, and B.A. Thomson Local spatial autocorrelation in a biological model Geog. Anal. 30 1998 331 354
    • (1998) Geog. Anal. , vol.30 , pp. 331-354
    • Sokal, R.R.1    Oden, N.L.2    Thomson, B.A.3
  • 48
    • 0031696340 scopus 로고    scopus 로고
    • Local spatial autocorrelation in a biological variables
    • R.R. Sokal, N.L. Oden, and B.A. Thomson Local spatial autocorrelation in a biological variables Biol. J. Linnean Soc. 65 1998 41 62
    • (1998) Biol. J. Linnean Soc. , vol.65 , pp. 41-62
    • Sokal, R.R.1    Oden, N.L.2    Thomson, B.A.3
  • 49
    • 0035866947 scopus 로고    scopus 로고
    • GIS-based modeling of spatial pattern of snow cover distribution in an alpine area
    • U. Tappeiner, G. Tappeiner, J. Aschenwald, E. Tasser, and B. Ostendorf GIS-based modeling of spatial pattern of snow cover distribution in an alpine area Ecol. Model. 138 2001 265 275
    • (2001) Ecol. Model. , vol.138 , pp. 265-275
    • Tappeiner, U.1    Tappeiner, G.2    Aschenwald, J.3    Tasser, E.4    Ostendorf, B.5
  • 50
    • 21344431520 scopus 로고    scopus 로고
    • Modeling spatial processes: The identification and analysis of spatial relationships in regression residuals by means of Moran's I
    • M. Tiefelsdorf Modeling spatial processes: the identification and analysis of spatial relationships in regression residuals by means of Moran's I Lecture Notes Earth Sci. 87 2000 Springer, 167 pp.
    • (2000) Lecture Notes Earth Sci. , vol.87
    • Tiefelsdorf, M.1
  • 52
    • 0030327681 scopus 로고    scopus 로고
    • Understanding neural networks as statistical tools
    • B. Warner, and M. Misra Understanding neural networks as statistical tools Am. Stat. 50 4 1996 284 293
    • (1996) Am. Stat. , vol.50 , Issue.4 , pp. 284-293
    • Warner, B.1    Misra, M.2
  • 53
    • 0037202451 scopus 로고    scopus 로고
    • Predicting species spatial distribution using presence-only data: A case study of native New Zealand ferns
    • A.E. Zaniewski, A. Lehmann, and J.M. Overton Predicting species spatial distribution using presence-only data: a case study of native New Zealand ferns Ecol. Model. 157 2002 261 280
    • (2002) Ecol. Model. , vol.157 , pp. 261-280
    • Zaniewski, A.E.1    Lehmann, A.2    Overton, J.M.3
  • 54
    • 2642514130 scopus 로고    scopus 로고
    • Local modeling of tree growth by geographically weighted regression
    • L. Zhang, and H. Shi Local modeling of tree growth by geographically weighted regression For. Sci. 50 2004 225 244
    • (2004) For. Sci. , vol.50 , pp. 225-244
    • Zhang, L.1    Shi, H.2
  • 55
    • 1242300158 scopus 로고    scopus 로고
    • Modeling spatial variations in tree diameter-height relationships
    • L. Zhang, H. Bi, P. Cheng, and C.J. Davis Modeling spatial variations in tree diameter-height relationships For. Ecol. Manage. 189 2004 317 329
    • (2004) For. Ecol. Manage. , vol.189 , pp. 317-329
    • Zhang, L.1    Bi, H.2    Cheng, P.3    Davis, C.J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.