-
1
-
-
0003896318
-
-
Computer Science and Applied Mathematics. A Series of Monographs and Textbooks. Academic Press, Inc., New York
-
BERTSEKAS, D.P. (1982). Constrained optimization and Lagrange multiplier methods. Computer Science and Applied Mathematics. A Series of Monographs and Textbooks. Academic Press, Inc., New York.
-
(1982)
Constrained Optimization and Lagrange Multiplier Methods
-
-
Bertsekas, D.P.1
-
2
-
-
0026966646
-
A training algorithm for optimal margin classifiers
-
D. Haussler (editor). ACM Press, Pittsburg, PA
-
BOSER, B.E., GUYON, I.M. & VAPNIK, V.N. (1992). A training algorithm for optimal margin classifiers. D. Haussler (editor). Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pp. 144-152. ACM Press, Pittsburg, PA.
-
(1992)
Proceedings of the Fifth Annual Workshop on Computational Learning Theory
, pp. 144-152
-
-
Boser, B.E.1
Guyon, I.M.2
Vapnik, V.N.3
-
3
-
-
0004561951
-
-
UCSC-CRL 99-09, University of California, Santa Cruz, Santa Cruz, CA
-
BROWN, M.P.S., GRUNDY, W.N., LIN, D., CRISTIANINI, N., SUGNET, C., MANUEL ARES, Jr. & HAUSSLER, D. (1999). Support vector machine classification of microarray gene expression data. UCSC-CRL 99-09, University of California, Santa Cruz, Santa Cruz, CA.
-
(1999)
Support Vector Machine Classification of Microarray Gene Expression Data
-
-
Brown, M.P.S.1
Grundy, W.N.2
Lin, D.3
Cristianini, N.4
Sugnet, C.5
Manuel Jr., A.6
Haussler, D.7
-
4
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
BURGES, C.J.C. (1998). A tutorial on support vector machines for pattern recognition. Knowledge Discovery and Data Mining, 2(2), 121-167.
-
(1998)
Knowledge Discovery and Data Mining
, vol.2
, Issue.2
, pp. 121-167
-
-
Burges, C.J.C.1
-
6
-
-
0004322633
-
Simple learning algorithms for training support vector machines
-
Department of Engineering Mathematics, University of Bristol, Bristol
-
CAMPBELL, C. & CRISTIANINI, N. (1998). Simple learning algorithms for training support vector machines. Tech. rep., Department of Engineering Mathematics, University of Bristol, Bristol.
-
(1998)
Tech. Rep.
-
-
Campbell, C.1
Cristianini, N.2
-
7
-
-
34249753618
-
Support-vector networks
-
CORTES, C. & VAPNIK, V. (1995). Support-Vector networks. Machine Learning, 20(3), 273-297.
-
(1995)
Machine Learning
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
8
-
-
0010442827
-
On the algorithmic implementation of multiclass kernel-based vector machines
-
CRAMMER, K. & SINGER, Y. (2001). On the algorithmic implementation of multiclass kernel-based vector machines. Journal of Machine Learning Research, pp. 265-292.
-
(2001)
Journal of Machine Learning Research
, pp. 265-292
-
-
Crammer, K.1
Singer, Y.2
-
9
-
-
18444372697
-
-
CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia, Pennsylvania
-
EFRON, B. (1982). The Jackknife, the Bootstrap and other resampling plans. CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia, Pennsylvania.
-
(1982)
The Jackknife, the Bootstrap and Other Resampling Plans
-
-
Efron, B.1
-
10
-
-
0003798631
-
A unified framework for regularization networks and support vector machines
-
Paper No. 171, Massachusetts Institute of Technology: Artificial Intelligence Laboratory/ Center for Biological and Computational Learning (Department of Brain and Cognitive Sciences), Cambridge, Mass. Also appeared as 'Regularization Networks and Support Vector Machines' in 'Advances in Large-Margin Classifiers (Neural Information Processing) (Alexander Johannes Smola, Peter L. Bartlett, Bernhard Schölkopf, and D. Schuurmans, eds.), ch. 10, MIT Press, 2000'
-
EVGENIOU, T., PONTIL, M. & POGGIO, T. (2000). A unified framework for regularization networks and support vector machines. Tech. Rep. A.I. Memo No. 1654/C.B.C.L. Paper No. 171, Massachusetts Institute of Technology: Artificial Intelligence Laboratory/ Center for Biological and Computational Learning (Department of Brain and Cognitive Sciences), Cambridge, Mass. Also appeared as 'Regularization Networks and Support Vector Machines' in 'Advances in Large-Margin Classifiers (Neural Information Processing) (Alexander Johannes Smola, Peter L. Bartlett, Bernhard Schölkopf, and D. Schuurmans, eds.), ch. 10, MIT Press, 2000'.
-
(2000)
Tech. Rep. A.I. Memo No. 1654/C.B.C.L.
-
-
Evgeniou, T.1
Pontil, M.2
Poggio, T.3
-
11
-
-
33747180475
-
Predicting time series with a local support vector regression machine
-
FERNÁNDEZ, R. (1999). Predicting time series with a local support vector regression machine. Proceedings of ACAI'99.
-
(1999)
Proceedings of ACAI'99
-
-
Fernández, R.1
-
12
-
-
0001219859
-
Regularization theory and neural networks architectures
-
GIROSI, F., JONES, M. & POGGIO, T. (1995). Regularization theory and neural networks architectures. Neural Computation, 7(2), 219-269.
-
(1995)
Neural Computation
, vol.7
, Issue.2
, pp. 219-269
-
-
Girosi, F.1
Jones, M.2
Poggio, T.3
-
13
-
-
0033702673
-
A new multi-class SVM based on a uniform convergence result
-
S.-I. Amari, C.L. Giles, M. Gori and V. Piuri (editors)
-
GUERMEUR, Y., ELISSEEFF, A. & PAUGAM-MOISY, H. (2000). A new multi-class SVM based on a uniform convergence result. S.-I. Amari, C.L. Giles, M. Gori and V. Piuri (editors). Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks (IJCNN 2000).
-
(2000)
Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks (IJCNN 2000)
-
-
Guermeur, Y.1
Elisseeff, A.2
Paugam-Moisy, H.3
-
14
-
-
0005396750
-
Automatic capacity tuning of very large VC-dimension classifiers
-
Morgan Kaufmann, San Mateo, CA
-
GUYON, I., BOSER, B.E. & VAPNIK, V.N. (1993). Automatic capacity tuning of very large VC-dimension classifiers. Advances in Neural Information Processing Systems 5 (NIPS'92), pp. 147-155. Morgan Kaufmann, San Mateo, CA.
-
(1993)
Advances in Neural Information Processing Systems 5 (NIPS'92)
, pp. 147-155
-
-
Guyon, I.1
Boser, B.E.2
Vapnik, V.N.3
-
17
-
-
0343423370
-
-
Heidelberg Science Library. Springer-Verlag
-
KOO, D. (1977). Elements of optimization. Heidelberg Science Library. Springer-Verlag.
-
(1977)
Elements of Optimization
-
-
Koo, D.1
-
19
-
-
0038007185
-
Multicategory support vector machines
-
Department of Statistics, University of Wisconsin-Madison. To appear, Proceedings of the 33rd Symposium on the Interface
-
LEE, Y., LIN, Y. & WAHBA, G. (2001). Multicategory support vector machines. Tech. Rep. TR 1043, Department of Statistics, University of Wisconsin-Madison. To appear, Proceedings of the 33rd Symposium on the Interface.
-
(2001)
Tech. Rep. TR
, vol.1043
-
-
Lee, Y.1
Lin, Y.2
Wahba, G.3
-
20
-
-
0031375732
-
Nonlinear prediction of chaotic time series using support vector machines
-
J. Principe, L. Gile, N. Morgan & E. Wilson (editors). IEEE, New York
-
MUKHERJEE, S., OSUNA, E. & GIROSI, F. (1997). Nonlinear prediction of chaotic time series using support vector machines. J. Principe, L. Gile, N. Morgan & E. Wilson (editors). Neural networks for signal processing VII - Proceedings of the 1997 IEEE Workshop, pp. 511-520. IEEE, New York.
-
(1997)
Neural Networks for Signal Processing VII - Proceedings of the 1997 IEEE Workshop
, pp. 511-520
-
-
Mukherjee, S.1
Osuna, E.2
Girosi, F.3
-
21
-
-
84956628443
-
Predicting time series with support vector machines
-
W. Gerstner, A. Germond, M. Hasler & J.-D. Nicoud (editors). Artificial Neural Networks - ICANN '97. ICANN, Springer, Berlin. ISBN 3-540-63631-5
-
MÜLLER, K.-R., SMOLA, A.J., RÄTSCH, G. SCHÖLKOPF, B., KOHLMORGEN, J. & VAPNIK, V.N. (1997). Predicting time series with support vector machines. W. Gerstner, A. Germond, M. Hasler & J.-D. Nicoud (editors). Artificial Neural Networks - ICANN '97, vol. 1327 of Lecture Notes in Computer Science, pp. 999-1004. ICANN, Springer, Berlin. ISBN 3-540-63631-5.
-
(1997)
Lecture Notes in Computer Science
, vol.1327
, pp. 999-1004
-
-
Müller, K.-R.1
Smola, A.J.2
Rätsch, G.3
Schölkopf, B.4
Kohlmorgen, J.5
Vapnik, V.N.6
-
22
-
-
0003798627
-
-
MIT Press, Cambridge, MA, as 'Using Support Vector Machines for Time Series Prediction'
-
Also in 'Advances in Kernel Methods - Support Vector Learning, pages 243-253. MIT Press, Cambridge, MA, 1999' as 'Using Support Vector Machines for Time Series Prediction'.
-
(1999)
Advances in Kernel Methods - Support Vector Learning
, pp. 243-253
-
-
-
23
-
-
18444362186
-
-
Classical optimization: Foundations and extensions. North-Holland/ American Elsevier
-
PANIK, M.J. (1976). Classical optimization: Foundations and extensions. vol. 16 of Studies in Mathematical and Managerial Economics. North-Holland/American Elsevier.
-
(1976)
Studies in Mathematical and Managerial Economics
, vol.16
-
-
Panik, M.J.1
-
24
-
-
84888364466
-
Large margin DAGs for multiclass classification
-
S. Solla, T. Leen & K. Müller (editors). MIT Press
-
PLATT, J.C., CRISTIANINI, N. & SHAWE-TAYLOR, J. (2000). Large margin DAGs for multiclass classification. S. Solla, T. Leen & K. Müller (editors). Advances in Neural Information Processing Systems 12. MIT Press.
-
(2000)
Advances in Neural Information Processing Systems
, vol.12
-
-
Platt, J.C.1
Cristianini, N.2
Shawe-Taylor, J.3
-
26
-
-
1542379687
-
Statistical learning and kernel methods
-
Microsoft Research, Microsoft Corporation, One Microsoft Way, Redmond, WA 98052. Course notes of the Interdisciplinary College, Günne, Germany, in March 2000
-
SCHÖLKOPF, B. (2000). Statistical learning and kernel methods. Tech. Rep. MSR-TR-2000-23, Microsoft Research, Microsoft Corporation, One Microsoft Way, Redmond, WA 98052. Course notes of the Interdisciplinary College, Günne, Germany, in March 2000. http://research.microsoft.com/~bsc.
-
(2000)
Tech. Rep.
, vol.MSR-TR-2000-23
-
-
Schölkopf, B.1
-
27
-
-
0003414688
-
New support vector algorithms
-
NeuroCOLT, UK
-
SCHÖLKOPF, B., SMOLA, A.J., WILLIAMSON, R.C. & BARTLETT, P.L. New support vector algorithms. Technical Report NC-TR-98-031, NeuroCOLT, UK.
-
Technical Report
, vol.NC-TR-98-031
-
-
Schölkopf, B.1
Smola, A.J.2
Williamson, R.C.3
Bartlett, P.L.4
-
28
-
-
17444438778
-
-
Also appeared in Neural Computation, vol. 12, pp. 1207-1245, 2000.
-
(2000)
Neural Computation
, vol.12
, pp. 1207-1245
-
-
-
29
-
-
0031272926
-
Comparing support vector machines with Gaussian kernels to radial basis function classifiers
-
SCHÖLKOPF, B., SUNG, K.-K., BURGES, C.J., GIROSI, F., NIYOGI, P., POGGIO, T. & VAPNIK, V.N. (1997). Comparing support vector machines with Gaussian kernels to radial basis function classifiers. IEEE Transactions on Signal Processing, 45(11), 2758-2765.
-
(1997)
IEEE Transactions on Signal Processing
, vol.45
, Issue.11
, pp. 2758-2765
-
-
Schölkopf, B.1
Sung, K.-K.2
Burges, C.J.3
Girosi, F.4
Niyogi, P.5
Poggio, T.6
Vapnik, V.N.7
-
30
-
-
0010236547
-
On a kernel-based method for pattern recognition, regression, approximation and operator inversion
-
GMD FIRST
-
SMOLA, A.J. & SCHÖLKOPF, B. (1997). On a kernel-based method for pattern recognition, regression, approximation and operator inversion. Technical Report 1064, GMD FIRST.
-
(1997)
Technical Report
, vol.1064
-
-
Smola, A.J.1
Schölkopf, B.2
-
31
-
-
24044515976
-
-
Also appeared in Algorithmica, 22:211-231, 1998.
-
(1998)
Algorithmica
, vol.22
, pp. 211-231
-
-
-
32
-
-
0003401675
-
A tutorial on support vector regression
-
NeuroCOLT, Royal Holloway College, University of London
-
SMOLA, A.J. & SCHÖLKOPF, B. (1998). A tutorial on support vector regression. Tech. Rep. NC2-TR-1998-030, NeuroCOLT, Royal Holloway College, University of London.
-
(1998)
Tech. Rep.
, vol.NC2-TR-1998-030
-
-
Smola, A.J.1
Schölkopf, B.2
-
34
-
-
0003969585
-
-
Springer Series in Statistics. Springer-Verlag. ISBN 0-387-90733-5. Translated by Samuel Kotz
-
VAPNIK, V.N. (1982). Estimation of dependences based on empirical data. Springer Series in Statistics. Springer-Verlag. ISBN 0-387-90733-5. Translated by Samuel Kotz.
-
(1982)
Estimation of Dependences Based on Empirical Data
-
-
Vapnik, V.N.1
-
36
-
-
84887252594
-
Support vector method for function approximation, regression estimation, and signal processing
-
M. Mozer, M.I. Jordan & T. Petsche (editors). MIT Press, Cambridge, MA
-
VAPNIK, V.N., GOLOWICH, S.E. & SMOLA, A.J. (1997). Support vector method for function approximation, regression estimation, and signal processing. M. Mozer, M.I. Jordan & T. Petsche (editors). Advances in Neural Information Processing Systems 9, pp. 281-287. MIT Press, Cambridge, MA.
-
(1997)
Advances in Neural Information Processing Systems
, vol.9
, pp. 281-287
-
-
Vapnik, V.N.1
Golowich, S.E.2
Smola, A.J.3
-
37
-
-
10844281405
-
-
Ph.D. thesis, Department of Computer Science, Royal Holloway, University of London, Egham, Surrey
-
WESTON, J.A.E. (1999). Extensions to the support vector method. Ph.D. thesis, Department of Computer Science, Royal Holloway, University of London, Egham, Surrey.
-
(1999)
Extensions to the Support Vector Method
-
-
Weston, J.A.E.1
-
38
-
-
0003425673
-
Multi-class support vector machines
-
Department of Computer Science, Royal Holloway, University of London, Egham, Surrey TW20 0EX, England
-
WESTON, J.A.E. & WATKINS, C. (1998). Multi-class support vector machines. Tech. Rep. CSD-TR-98-04, Department of Computer Science, Royal Holloway, University of London, Egham, Surrey TW20 0EX, England.
-
(1998)
Tech. Rep.
, vol.CSD-TR-98-04
-
-
Weston, J.A.E.1
Watkins, C.2
|