-
1
-
-
0034610814
-
The language of covalent histone modifications
-
Strahl B.D., Allis C.D. The language of covalent histone modifications. Nature. 403:2000;41-45.
-
(2000)
Nature
, vol.403
, pp. 41-45
-
-
Strahl, B.D.1
Allis, C.D.2
-
2
-
-
0035480033
-
Control of muscle development by dueling HATs and HDACs
-
McKinsey T.A., Zhang C.L., Olson E.N. Control of muscle development by dueling HATs and HDACs. Curr Opin Genet Dev. 11:2001;497-504.
-
(2001)
Curr Opin Genet Dev
, vol.11
, pp. 497-504
-
-
McKinsey, T.A.1
Zhang, C.L.2
Olson, E.N.3
-
3
-
-
0032191350
-
Muscle differentiation: More complexity to the network of myogenic regulators
-
Arnold H.H., Winter B. Muscle differentiation: more complexity to the network of myogenic regulators. Curr Opin Genet Dev. 8:1998;539-544.
-
(1998)
Curr Opin Genet Dev
, vol.8
, pp. 539-544
-
-
Arnold, H.H.1
Winter, B.2
-
4
-
-
0032437107
-
Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins
-
Black B.L., Olson E.N. Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Annu Rev Cell Dev Biol. 14:1998;167-196.
-
(1998)
Annu Rev Cell Dev Biol
, vol.14
, pp. 167-196
-
-
Black, B.L.1
Olson, E.N.2
-
5
-
-
0031310741
-
Differential roles of p300 and PCAF acetyltransferases in muscle differentiation
-
Puri P.L., Sartorelli V., Yang X.J., Hamamori Y., Ogryzko V.V., Howard B.H., Kedes L., Wang J.Y., Graessmann A., Nakatani Y., Levrero M. Differential roles of p300 and PCAF acetyltransferases in muscle differentiation. Mol Cell. 1:1997;35-45.
-
(1997)
Mol Cell
, vol.1
, pp. 35-45
-
-
Puri, P.L.1
Sartorelli, V.2
Yang, X.J.3
Hamamori, Y.4
Ogryzko, V.V.5
Howard, B.H.6
Kedes, L.7
Wang, J.Y.8
Graessmann, A.9
Nakatani, Y.10
Levrero, M.11
-
6
-
-
17944373135
-
CBP/p300 and muscle differentiation: No HAT, no muscle
-
This paper is the first to demonstrate that the histone acetyltransferase activity of p300/CBP is required for skeletal myogenesis. The authors employ a novel p300/CBP-specific inhibitor first described by Lau et al. (2000) [7••] (see below).
-
Polesskaya A., Naguibneva I., Fritsch L., Duquet A., Ait-Si-Ali S., Robin P., Vervisch A., Pritchard L.L., Cole P., Harel-Bellan A. CBP/p300 and muscle differentiation: no HAT, no muscle. EMBO J. 20:2001;6816-6825. This paper is the first to demonstrate that the histone acetyltransferase activity of p300/CBP is required for skeletal myogenesis. The authors employ a novel p300/CBP-specific inhibitor first described by Lau et al. (2000) [7••] (see below).
-
(2001)
EMBO J
, vol.20
, pp. 6816-6825
-
-
Polesskaya, A.1
Naguibneva, I.2
Fritsch, L.3
Duquet, A.4
Ait-Si-Ali, S.5
Robin, P.6
Vervisch, A.7
Pritchard, L.L.8
Cole, P.9
Harel-Bellan, A.10
-
7
-
-
0033714888
-
HATs off: Selective synthetic inhibitors of the histone acetyltransferases p300 and PCAF
-
This paper describes novel peptide CoA conjugates that act as specific inhibitors of histone acetyltransferases. These inhibitors will provide valuable tools to address the role of histone acetyltransferases in the control of different biological processes.
-
Lau O.D., Kundu T.K., Soccio R.E., Ait-Si-Ali S., Khalil E.M., Vassilev A., Wolffe A.P., Nakatani Y., Roeder R.G., Cole P.A. HATs off: selective synthetic inhibitors of the histone acetyltransferases p300 and PCAF. Mol Cell. 5:2000;589-595. This paper describes novel peptide CoA conjugates that act as specific inhibitors of histone acetyltransferases. These inhibitors will provide valuable tools to address the role of histone acetyltransferases in the control of different biological processes.
-
(2000)
Mol Cell
, vol.5
, pp. 589-595
-
-
Lau, O.D.1
Kundu, T.K.2
Soccio, R.E.3
Ait-Si-Ali, S.4
Khalil, E.M.5
Vassilev, A.6
Wolffe, A.P.7
Nakatani, Y.8
Roeder, R.G.9
Cole, P.A.10
-
8
-
-
0029825698
-
Interaction and functional collaboration of p300/CBP and bHLH proteins in muscle and B-cell differentiation
-
Eckner R., Yao T.P., Oldread E., Livingston D.M. Interaction and functional collaboration of p300/CBP and bHLH proteins in muscle and B-cell differentiation. Genes Dev. 10:1996;2478-2490.
-
(1996)
Genes Dev
, vol.10
, pp. 2478-2490
-
-
Eckner, R.1
Yao, T.P.2
Oldread, E.3
Livingston, D.M.4
-
9
-
-
0031045835
-
Molecular mechanisms of myogenic coactivation by p300: Direct interaction with the activation domain of MyoD and with the MADS box of MEF2C
-
Sartorelli V., Huang J., Hamamori Y., Kedes L. Molecular mechanisms of myogenic coactivation by p300: direct interaction with the activation domain of MyoD and with the MADS box of MEF2C. Mol Cell Biol. 17:1997;1010-1026.
-
(1997)
Mol Cell Biol
, vol.17
, pp. 1010-1026
-
-
Sartorelli, V.1
Huang, J.2
Hamamori, Y.3
Kedes, L.4
-
10
-
-
0034658463
-
The steroid receptor coactivator, GRIP-1, is necessary for MEF-2C-dependent gene expression and skeletal muscle differentiation
-
Chen S.L., Dowhan D.H., Hosking B.M., Muscat G.E. The steroid receptor coactivator, GRIP-1, is necessary for MEF-2C-dependent gene expression and skeletal muscle differentiation. Genes Dev. 14:2000;1209-1228.
-
(2000)
Genes Dev
, vol.14
, pp. 1209-1228
-
-
Chen, S.L.1
Dowhan, D.H.2
Hosking, B.M.3
Muscat, G.E.4
-
11
-
-
0037040245
-
The coactivator-associated arginine methyltransferase is necessary for muscle differentiation: CARM1 coactivates myocyte enhancer factor-2
-
This paper describes a role for the CARM1 arginine methyltransferase as a positive regulator of MEF2-dependent transcription and muscle differentiation.
-
Chen S.L., Loffler K.A., Chen D., Stallcup M.R., Muscat G.E. The coactivator-associated arginine methyltransferase is necessary for muscle differentiation: CARM1 coactivates myocyte enhancer factor-2. J Biol Chem. 277:2002;4324-4333. This paper describes a role for the CARM1 arginine methyltransferase as a positive regulator of MEF2-dependent transcription and muscle differentiation.
-
(2002)
J Biol Chem
, vol.277
, pp. 4324-4333
-
-
Chen, S.L.1
Loffler, K.A.2
Chen, D.3
Stallcup, M.R.4
Muscat, G.E.5
-
12
-
-
0033603396
-
Regulation of transcription by a protein methyltransferase
-
Chen D., Ma H., Hong H., Koh S.S., Huang S.M., Schurter B.T., Aswad D.W., Stallcup M.R. Regulation of transcription by a protein methyltransferase. Science. 284:1999;2174-2177.
-
(1999)
Science
, vol.284
, pp. 2174-2177
-
-
Chen, D.1
Ma, H.2
Hong, H.3
Koh, S.S.4
Huang, S.M.5
Schurter, B.T.6
Aswad, D.W.7
Stallcup, M.R.8
-
13
-
-
0034731452
-
Synergistic, p160 coactivator-dependent enhancement of estrogen receptor function by CARM1 and p300
-
Chen D., Huang S.M., Stallcup M.R. Synergistic, p160 coactivator-dependent enhancement of estrogen receptor function by CARM1 and p300. J Biol Chem. 275:2000;40810-40816.
-
(2000)
J Biol Chem
, vol.275
, pp. 40810-40816
-
-
Chen, D.1
Huang, S.M.2
Stallcup, M.R.3
-
14
-
-
0034234237
-
CBP/p300 in cell growth, transformation, and development
-
This is a comprehensive review of p300/CBP function and regulation.
-
Goodman R.H., Smolik S. CBP/p300 in cell growth, transformation, and development. Genes Dev. 14:2000;1553-1577. This is a comprehensive review of p300/CBP function and regulation.
-
(2000)
Genes Dev
, vol.14
, pp. 1553-1577
-
-
Goodman, R.H.1
Smolik, S.2
-
15
-
-
0035930726
-
A transcriptional switch mediated by cofactor methylation
-
Xu W., Chen H., Du K., Asahara H., Tini M., Emerson B.M., Montminy M., Evans R.M. A transcriptional switch mediated by cofactor methylation. Science. 294:2001;2507-2511.
-
(2001)
Science
, vol.294
, pp. 2507-2511
-
-
Xu, W.1
Chen, H.2
Du, K.3
Asahara, H.4
Tini, M.5
Emerson, B.M.6
Montminy, M.7
Evans, R.M.8
-
16
-
-
0036165434
-
MEF2: A calcium-dependent regulator of cell division, differentiation and death
-
McKinsey T.A., Zhang C.L., Olson E.N. MEF2: a calcium-dependent regulator of cell division, differentiation and death. Trends Biochem Sci. 27:2002;40-47.
-
(2002)
Trends Biochem Sci
, vol.27
, pp. 40-47
-
-
McKinsey, T.A.1
Zhang, C.L.2
Olson, E.N.3
-
17
-
-
0035794552
-
A role for histone deacetylase HDAC1 in modulating the transcriptional activity of MyoD: Inhibition of the myogenic program
-
Mal A., Sturniolo M., Schiltz R.L., Ghosh M.K., Harter M.L. A role for histone deacetylase HDAC1 in modulating the transcriptional activity of MyoD: inhibition of the myogenic program. EMBO J. 20:2001;1739-1753.
-
(2001)
EMBO J
, vol.20
, pp. 1739-1753
-
-
Mal, A.1
Sturniolo, M.2
Schiltz, R.L.3
Ghosh, M.K.4
Harter, M.L.5
-
18
-
-
17944376263
-
Class I histone deacetylases sequentially interact with MyoD and pRb during skeletal myogenesis
-
This paper describes the functional and physical interplay between HDAC1, the retinoblastoma tumour suppressor, and MyoD. HDAC1 negatively and positively regulates muscle differentiation through its association with MyoD and retinoblastoma, respectively.
-
Puri P.L., Iezzi S., Stiegler P., Chen T.T., Schiltz R.L., Muscat G.E., Giordano A., Kedes L., Wang J.Y., Sartorelli V. Class I histone deacetylases sequentially interact with MyoD and pRb during skeletal myogenesis. Mol Cell. 8:2001;885-897. This paper describes the functional and physical interplay between HDAC1, the retinoblastoma tumour suppressor, and MyoD. HDAC1 negatively and positively regulates muscle differentiation through its association with MyoD and retinoblastoma, respectively.
-
(2001)
Mol Cell
, vol.8
, pp. 885-897
-
-
Puri, P.L.1
Iezzi, S.2
Stiegler, P.3
Chen, T.T.4
Schiltz, R.L.5
Muscat, G.E.6
Giordano, A.7
Kedes, L.8
Wang, J.Y.9
Sartorelli, V.10
-
19
-
-
0034306996
-
The Rb/E2F pathway: Expanding roles and emerging paradigms
-
Harbour J.W., Dean D.C. The Rb/E2F pathway: expanding roles and emerging paradigms. Genes Dev. 14:2000;2393-2409.
-
(2000)
Genes Dev
, vol.14
, pp. 2393-2409
-
-
Harbour, J.W.1
Dean, D.C.2
-
20
-
-
0036204443
-
Promoter-specific regulation of MyoD binding and signal transduction cooperate to pattern gene expression
-
This paper defines the genes that are regulated by MyoD during skeletal muscle differentiation. The paper reveals that temporally restricted, promoter-specific binding of MyoD is a key mechanism for the regulation of MyoD target gene expression.
-
Bergstrom D.A., Penn B.H., Strand A., Perry R.L., Rudnicki M.A., Tapscott S.J. Promoter-specific regulation of MyoD binding and signal transduction cooperate to pattern gene expression. Mol Cell. 9:2002;587-600. This paper defines the genes that are regulated by MyoD during skeletal muscle differentiation. The paper reveals that temporally restricted, promoter-specific binding of MyoD is a key mechanism for the regulation of MyoD target gene expression.
-
(2002)
Mol Cell
, vol.9
, pp. 587-600
-
-
Bergstrom, D.A.1
Penn, B.H.2
Strand, A.3
Perry, R.L.4
Rudnicki, M.A.5
Tapscott, S.J.6
-
21
-
-
18444414332
-
Essential function of histone deacetylase 1 in proliferation control and CDK inhibitor repression
-
Lagger G., O'Carroll D., Rembold M., Khier H., Tischler J., Weitzer G., Schuettengruber B., Hauser C., Brunmeir R., Jenuwein T., Seiser C. Essential function of histone deacetylase 1 in proliferation control and CDK inhibitor repression. EMBO J. 21:2002;2672-2681.
-
(2002)
EMBO J
, vol.21
, pp. 2672-2681
-
-
Lagger, G.1
O'Carroll, D.2
Rembold, M.3
Khier, H.4
Tischler, J.5
Weitzer, G.6
Schuettengruber, B.7
Hauser, C.8
Brunmeir, R.9
Jenuwein, T.10
Seiser, C.11
-
22
-
-
0035861594
-
Histone deacetylase 1 phosphorylation promotes enzymatic activity and complex formation
-
Pflum M.K., Tong J.K., Lane W.S., Schreiber S.L. Histone deacetylase 1 phosphorylation promotes enzymatic activity and complex formation. J Biol Chem. 276:2001;47733-47741.
-
(2001)
J Biol Chem
, vol.276
, pp. 47733-47741
-
-
Pflum, M.K.1
Tong, J.K.2
Lane, W.S.3
Schreiber, S.L.4
-
23
-
-
0034811221
-
Mammalian histone deacetylase 1 protein is posttranslationally modified by phosphorylation
-
Cai R., Kwon P., Yan-Neale Y., Sambuccetti L., Fischer D., Cohen D. Mammalian histone deacetylase 1 protein is posttranslationally modified by phosphorylation. Biochem Biophys Res Commun. 283:2001;445-453.
-
(2001)
Biochem Biophys Res Commun
, vol.283
, pp. 445-453
-
-
Cai, R.1
Kwon, P.2
Yan-Neale, Y.3
Sambuccetti, L.4
Fischer, D.5
Cohen, D.6
-
24
-
-
0037205476
-
Phosphatase inhibition leads to histone deacetylases 1 and 2 phosphorylation and disruption of corepressor interactions
-
Galasinski S.C., Resing K.A., Goodrich J.A., Ahn N.G. Phosphatase inhibition leads to histone deacetylases 1 and 2 phosphorylation and disruption of corepressor interactions. J Biol Chem. 277:2002;19618-19626.
-
(2002)
J Biol Chem
, vol.277
, pp. 19618-19626
-
-
Galasinski, S.C.1
Resing, K.A.2
Goodrich, J.A.3
Ahn, N.G.4
-
25
-
-
0037189568
-
SUMO-1 modification of histone deacetylase 1 (HDAC1) modulates its biological activities
-
David G., Neptune M.A., DePinho R.A. SUMO-1 modification of histone deacetylase 1 (HDAC1) modulates its biological activities. J Biol Chem. 277:2002;23658-23663.
-
(2002)
J Biol Chem
, vol.277
, pp. 23658-23663
-
-
David, G.1
Neptune, M.A.2
DePinho, R.A.3
-
26
-
-
0035576737
-
A new RING for SUMO: Wrestling transcriptional responses into nuclear bodies with PIAS family E3 SUMO ligases
-
Jackson P.K. A new RING for SUMO: wrestling transcriptional responses into nuclear bodies with PIAS family E3 SUMO ligases. Genes Dev. 15:2001;3053-3058.
-
(2001)
Genes Dev
, vol.15
, pp. 3053-3058
-
-
Jackson, P.K.1
-
27
-
-
0018422676
-
Manipulation of myogenesis in vitro: Reversible inhibition by DMSO
-
Blau H.M., Epstein C.J. Manipulation of myogenesis in vitro: reversible inhibition by DMSO. Cell. 17:1979;95-108.
-
(1979)
Cell
, vol.17
, pp. 95-108
-
-
Blau, H.M.1
Epstein, C.J.2
-
28
-
-
0018850225
-
Expression of myogenic differentiation and myotube formation by chick embryo myoblasts in the presence of sodium butyrate
-
Fiszman M.Y., Montarras D., Wright W., Gros F. Expression of myogenic differentiation and myotube formation by chick embryo myoblasts in the presence of sodium butyrate. Exp Cell Res. 126:1980;31-37.
-
(1980)
Exp Cell Res
, vol.126
, pp. 31-37
-
-
Fiszman, M.Y.1
Montarras, D.2
Wright, W.3
Gros, F.4
-
29
-
-
0026657006
-
Sodium butyrate inhibits myogenesis by interfering with the transcriptional activation function of MyoD and myogenin
-
Johnston L.A., Tapscott S.J., Eisen H. Sodium butyrate inhibits myogenesis by interfering with the transcriptional activation function of MyoD and myogenin. Mol Cell Biol. 12:1992;5123-5130.
-
(1992)
Mol Cell Biol
, vol.12
, pp. 5123-5130
-
-
Johnston, L.A.1
Tapscott, S.J.2
Eisen, H.3
-
30
-
-
0033787913
-
Histone deacetylase activity is required for the induction of the MyoD muscle cell lineage in Xenopus
-
Steinbac O.C., Wolffe A.P., Rupp R.A. Histone deacetylase activity is required for the induction of the MyoD muscle cell lineage in Xenopus. Biol Chem. 381:2000;1013-1016.
-
(2000)
Biol Chem
, vol.381
, pp. 1013-1016
-
-
Steinbac, O.C.1
Wolffe, A.P.2
Rupp, R.A.3
-
31
-
-
0037188532
-
Stage-specific modulation of skeletal myogenesis by inhibitors of nuclear deacetylases
-
This paper demonstrates that three distinct histone deacetylase inhibitors, trichostatin A, butyrate and valproic acid, can either stimulate or inhibit muscle differentiation, depending on when and for how long they are added to cultured myoblasts.
-
Iezzi S., Cossu G., Nervi C., Sartorelli V., Puri P.L. Stage-specific modulation of skeletal myogenesis by inhibitors of nuclear deacetylases. Proc Natl Acad Sci USA. 99:2002;7757-7762. This paper demonstrates that three distinct histone deacetylase inhibitors, trichostatin A, butyrate and valproic acid, can either stimulate or inhibit muscle differentiation, depending on when and for how long they are added to cultured myoblasts.
-
(2002)
Proc Natl Acad Sci USA
, vol.99
, pp. 7757-7762
-
-
Iezzi, S.1
Cossu, G.2
Nervi, C.3
Sartorelli, V.4
Puri, P.L.5
-
32
-
-
0037162697
-
Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy
-
This paper demonstrates that class II histone deacetylases (HDACs) are potent repressors of cardiac hypertrophy. Signals that promote hypertrophic growth stimulate a HDAC kinase that phosphorylates and inactivates HDAC4, -5, -7 and -9. A HDAC9 knockout mouse spontaneously develops cardiac hypertrophy over time and is hypersensitive to hypertrophic cues at earlier timepoints.
-
Zhang C.L., McKinsey T.A., Chang S., Antos C.L., Hill J.A., Olson E.N. Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell. 110:2002;479-488. This paper demonstrates that class II histone deacetylases (HDACs) are potent repressors of cardiac hypertrophy. Signals that promote hypertrophic growth stimulate a HDAC kinase that phosphorylates and inactivates HDAC4, -5, -7 and -9. A HDAC9 knockout mouse spontaneously develops cardiac hypertrophy over time and is hypersensitive to hypertrophic cues at earlier timepoints.
-
(2002)
Cell
, vol.110
, pp. 479-488
-
-
Zhang, C.L.1
McKinsey, T.A.2
Chang, S.3
Antos, C.L.4
Hill, J.A.5
Olson, E.N.6
-
33
-
-
0036787922
-
Association of class II histone deacetylases with heterochromatin protein 1: A potential role for histone methylation in the control of muscle differentiation
-
Zhang C.L., McKinsey T.A., Olson E.N. Association of class II histone deacetylases with heterochromatin protein 1: a potential role for histone methylation in the control of muscle differentiation. Mol Cell Biol. 22:2002;7302-7312.
-
(2002)
Mol Cell Biol
, vol.22
, pp. 7302-7312
-
-
Zhang, C.L.1
McKinsey, T.A.2
Olson, E.N.3
-
34
-
-
18444370302
-
The SUMO E3 ligase RanBP2 promotes modification of the HDAC4 deacetylase
-
Kirsh O., Seeler J.S., Pichler A., Gast A., Muller S., Miska E., Mathieu M., Harel-Bellan A., Kouzarides T., Melchior F., Dejean A. The SUMO E3 ligase RanBP2 promotes modification of the HDAC4 deacetylase. EMBO J. 21:2002;2682-2691.
-
(2002)
EMBO J
, vol.21
, pp. 2682-2691
-
-
Kirsh, O.1
Seeler, J.S.2
Pichler, A.3
Gast, A.4
Muller, S.5
Miska, E.6
Mathieu, M.7
Harel-Bellan, A.8
Kouzarides, T.9
Melchior, F.10
Dejean, A.11
-
35
-
-
0034595213
-
MEF2 responds to multiple calcium-regulated signals in the control of skeletal muscle fiber type
-
Wu H., Naya F.J., McKinsey T.A., Mercer B., Shelton J.M., Chin E.R., Simard A.R., Michel R.N., Bassel-Duby R., Olson E.N., Williams R.S. MEF2 responds to multiple calcium-regulated signals in the control of skeletal muscle fiber type. EMBO J. 19:2000;1963-1973.
-
(2000)
EMBO J
, vol.19
, pp. 1963-1973
-
-
Wu, H.1
Naya, F.J.2
McKinsey, T.A.3
Mercer, B.4
Shelton, J.M.5
Chin, E.R.6
Simard, A.R.7
Michel, R.N.8
Bassel-Duby, R.9
Olson, E.N.10
Williams, R.S.11
-
36
-
-
17944382249
-
Activation of MEF2 by muscle activity is mediated through a calcineurin-dependent pathway
-
Wu H., Rothermel B., Kanatous S., Rosenberg P., Naya F.J., Shelton J.M., Hutcheson K.A., DiMaio J.M., Olson E.N., Bassel-Duby R., Williams R.S. Activation of MEF2 by muscle activity is mediated through a calcineurin-dependent pathway. EMBO J. 20:2001;6414-6423.
-
(2001)
EMBO J
, vol.20
, pp. 6414-6423
-
-
Wu, H.1
Rothermel, B.2
Kanatous, S.3
Rosenberg, P.4
Naya, F.J.5
Shelton, J.M.6
Hutcheson, K.A.7
DiMaio, J.M.8
Olson, E.N.9
Bassel-Duby, R.10
Williams, R.S.11
-
37
-
-
0036110854
-
Activation of the MEF2 transcription factor in skeletal muscles from myotonic mice
-
This paper demonstrates that MEF2 transcriptional activity is highly elevated in the muscles of arrested development of righting response (ADR) mouse. This mouse contains a mutation in the chloride channel 1 (CLCN1) gene that leads to the development of non-dystrophic myotonia characterized by increased numbers of slow/oxidative skeletal muscle fibres. Class II histone deacetylase protein levels are severely reduced in these muscles, suggesting that the MEF2 activation observed in these mice may be coupled to histone deacetylase degradation.
-
Wu H., Olson E.N. Activation of the MEF2 transcription factor in skeletal muscles from myotonic mice. J Clin Invest. 109:2002;1327-1333. This paper demonstrates that MEF2 transcriptional activity is highly elevated in the muscles of arrested development of righting response (ADR) mouse. This mouse contains a mutation in the chloride channel 1 (CLCN1) gene that leads to the development of non-dystrophic myotonia characterized by increased numbers of slow/oxidative skeletal muscle fibres. Class II histone deacetylase protein levels are severely reduced in these muscles, suggesting that the MEF2 activation observed in these mice may be coupled to histone deacetylase degradation.
-
(2002)
J Clin Invest
, vol.109
, pp. 1327-1333
-
-
Wu, H.1
Olson, E.N.2
-
38
-
-
0033678548
-
Decoding calcium signals involved in cardiac growth and function
-
Frey N., McKinsey T.A., Olson E.N. Decoding calcium signals involved in cardiac growth and function. Nat Med. 6:2000;1221-1227.
-
(2000)
Nat Med
, vol.6
, pp. 1221-1227
-
-
Frey, N.1
McKinsey, T.A.2
Olson, E.N.3
-
39
-
-
0032506542
-
Regulation of activity of the transcription factor GATA-1 by acetylation
-
Boyes J., Byfield P., Nakatani Y., Ogryzko V. Regulation of activity of the transcription factor GATA-1 by acetylation. Nature. 396:1998;594-598.
-
(1998)
Nature
, vol.396
, pp. 594-598
-
-
Boyes, J.1
Byfield, P.2
Nakatani, Y.3
Ogryzko, V.4
-
40
-
-
0032478276
-
CREB-binding protein cooperates with transcription factor GATA-1 and is required for erythroid differentiation
-
Blobel G.A., Nakajima T., Eckner R., Montminy M., Orkin S.H. CREB-binding protein cooperates with transcription factor GATA-1 and is required for erythroid differentiation. Proc Natl Acad Sci USA. 95:1998;2061-2066.
-
(1998)
Proc Natl Acad Sci USA
, vol.95
, pp. 2061-2066
-
-
Blobel, G.A.1
Nakajima, T.2
Eckner, R.3
Montminy, M.4
Orkin, S.H.5
-
41
-
-
0345218311
-
Nuclear factor of activated T cells (NFAT)-dependent transactivation regulated by the coactivators p300/CREB-binding protein (CBP)
-
Garcia-Rodriguez C., Rao A. Nuclear factor of activated T cells (NFAT)-dependent transactivation regulated by the coactivators p300/CREB-binding protein (CBP). J Exp Med. 187:1998;2031-2036.
-
(1998)
J Exp Med
, vol.187
, pp. 2031-2036
-
-
Garcia-Rodriguez, C.1
Rao, A.2
-
42
-
-
0037169542
-
The transcriptional co-activators CBP and p300 are activated via phenylephrine through the p42/p44 MAPK cascade
-
Gusterson R., Brar B., Faulkes D., Giordano A., Chrivia J., Latchman D. The transcriptional co-activators CBP and p300 are activated via phenylephrine through the p42/p44 MAPK cascade. J Biol Chem. 277:2002;2517-2524.
-
(2002)
J Biol Chem
, vol.277
, pp. 2517-2524
-
-
Gusterson, R.1
Brar, B.2
Faulkes, D.3
Giordano, A.4
Chrivia, J.5
Latchman, D.6
-
43
-
-
0034614611
-
Ca(2+)-dependent gene expression mediated by MEF2 transcription factors
-
Blaeser F., Ho N., Prywes R., Chatila T.A. Ca(2+)-dependent gene expression mediated by MEF2 transcription factors. J Biol Chem. 275:2000;197-209.
-
(2000)
J Biol Chem
, vol.275
, pp. 197-209
-
-
Blaeser, F.1
Ho, N.2
Prywes, R.3
Chatila, T.A.4
-
44
-
-
0034595311
-
GATA-dependent recruitment of MEF2 proteins to target promoters
-
Morin S., Charron F., Robitaille L., Nemer M. GATA-dependent recruitment of MEF2 proteins to target promoters. EMBO J. 19:2000;2046-2055.
-
(2000)
EMBO J
, vol.19
, pp. 2046-2055
-
-
Morin, S.1
Charron, F.2
Robitaille, L.3
Nemer, M.4
-
45
-
-
0033635242
-
Regulation of skeletal myogenesis by association of the MEF2 transcription factor with class II histone deacetylases
-
Lu J., McKinsey T.A., Zhang C.L., Olson E.N. Regulation of skeletal myogenesis by association of the MEF2 transcription factor with class II histone deacetylases. Mol Cell. 6:2000;233-244.
-
(2000)
Mol Cell
, vol.6
, pp. 233-244
-
-
Lu, J.1
McKinsey, T.A.2
Zhang, C.L.3
Olson, E.N.4
-
46
-
-
0035798680
-
MyoD can induce cell cycle arrest but not muscle differentiation in the presence of dominant negative SWI/SNF chromatin remodeling enzymes
-
de la Serna I.L., Roy K., Carlson K.A., Imbalzano A.N. MyoD can induce cell cycle arrest but not muscle differentiation in the presence of dominant negative SWI/SNF chromatin remodeling enzymes. J Biol Chem. 276:2001;41486-41491.
-
(2001)
J Biol Chem
, vol.276
, pp. 41486-41491
-
-
De la Serna, I.L.1
Roy, K.2
Carlson, K.A.3
Imbalzano, A.N.4
-
47
-
-
0035134330
-
Mammalian SWI/SNF complexes promote MyoD-mediated muscle differentiation
-
de la Serna I.L., Carlson K.A., Imbalzano A.N. Mammalian SWI/SNF complexes promote MyoD-mediated muscle differentiation. Nat Genet. 27:2001;187-190.
-
(2001)
Nat Genet
, vol.27
, pp. 187-190
-
-
De la Serna, I.L.1
Carlson, K.A.2
Imbalzano, A.N.3
-
48
-
-
0036161439
-
Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR
-
This paper demonstrates that the class I histone deacetylase, HDAC3, acts in trans to stimulate class II HDAC activity. HDAC3 is recruited to class II HDAC complexes via the SMRT and N-CoR co-repressors.
-
Fischle W., Dequiedt F., Hendzel M.J., Guenther M.G., Lazar M.A., Voelter W., Verdin E. Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR. Mol Cell. 9:2002;45-57. This paper demonstrates that the class I histone deacetylase, HDAC3, acts in trans to stimulate class II HDAC activity. HDAC3 is recruited to class II HDAC complexes via the SMRT and N-CoR co-repressors.
-
(2002)
Mol Cell
, vol.9
, pp. 45-57
-
-
Fischle, W.1
Dequiedt, F.2
Hendzel, M.J.3
Guenther, M.G.4
Lazar, M.A.5
Voelter, W.6
Verdin, E.7
-
49
-
-
0033964223
-
Isolation of a novel histone deacetylase reveals that class I and class II deacetylases promote SMRT-mediated repression
-
Kao H.Y., Downes M., Ordentlich P., Evans R.M. Isolation of a novel histone deacetylase reveals that class I and class II deacetylases promote SMRT-mediated repression. Genes Dev. 14:2000;55-66.
-
(2000)
Genes Dev
, vol.14
, pp. 55-66
-
-
Kao, H.Y.1
Downes, M.2
Ordentlich, P.3
Evans, R.M.4
|