메뉴 건너뛰기




Volumn 16, Issue 4, 2004, Pages 811-836

Different Paradigms for Choosing Sequential Reweighting Algorithms

Author keywords

[No Author keywords available]

Indexed keywords


EID: 1542351222     PISSN: 08997667     EISSN: None     Source Type: Journal    
DOI: 10.1162/089976604322860712     Document Type: Review
Times cited : (3)

References (26)
  • 1
    • 0005040255 scopus 로고    scopus 로고
    • Tech. Rep. Chicago: University of Chicago
    • Amit, Y., & Blanchard, G. (2001). Multiple randomized classifiers: MRCL (Tech. Rep.). Chicago: University of Chicago. Available on-line: http://galton.uchicago.edu/~amit/Papers/mrcl.ps.gz.
    • (2001) Multiple Randomized Classifiers: MRCL
    • Amit, Y.1    Blanchard, G.2
  • 2
    • 0001492549 scopus 로고    scopus 로고
    • Shape quantization and recognition with randomized trees
    • Amit, Y., & Geman, D. (1997). Shape quantization and recognition with randomized trees. Neural Computation, 9, 1545-1588.
    • (1997) Neural Computation , vol.9 , pp. 1545-1588
    • Amit, Y.1    Geman, D.2
  • 3
    • 84972545864 scopus 로고
    • An analog of the minmax theorem for vector payoffs
    • Blackwell, D. (1956). An analog of the minmax theorem for vector payoffs. Pacific Journal of Mathematics, 6, 1-8.
    • (1956) Pacific Journal of Mathematics , vol.6 , pp. 1-8
    • Blackwell, D.1
  • 4
  • 5
    • 1542277515 scopus 로고    scopus 로고
    • Generalization error bounds for aggregate classifiers
    • D. D. Denison, M. H. Hansen, C. C. Holmes, B. Mallick, & B. Yu (Eds.). Berlin: Springer-Verlag
    • Blanchard, G. (2003). Generalization error bounds for aggregate classifiers. In D. D. Denison, M. H. Hansen, C. C. Holmes, B. Mallick, & B. Yu (Eds.), Nonlinear estimation and classification. Berlin: Springer-Verlag.
    • (2003) Nonlinear Estimation and Classification
    • Blanchard, G.1
  • 6
    • 0346786584 scopus 로고    scopus 로고
    • Arcing classifiers
    • Breiman, L. (1998a). Arcing classifiers. Annals of Statistics, 26(3), 801-849.
    • (1998) Annals of Statistics , vol.26 , Issue.3 , pp. 801-849
    • Breiman, L.1
  • 7
    • 0003929807 scopus 로고    scopus 로고
    • Tech. Rep. Berkeley Statistics Department, University of California at Berkeley
    • Breiman, L. (1998b). Prediction games and arcing algorithms (Tech. Rep.). Berkeley Statistics Department, University of California at Berkeley. Available on-line: ftp://ftp.stat.berkeley.edu/pub/users/breiman/games.ps.Z.
    • (1998) Prediction Games and Arcing Algorithms
    • Breiman, L.1
  • 8
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. (2001). Random forests. Machine Learning, 45, 5-32.
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 10
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization
    • Dietterich, T. G. (2000). An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization. Machine Learning, 40, 139-158.
    • (2000) Machine Learning , vol.40 , pp. 139-158
    • Dietterich, T.G.1
  • 11
    • 0006444313 scopus 로고    scopus 로고
    • Tech. Rep. Queensland, Australia: Department of Computer Science and Electrical Engineering, University of Queensland
    • Frean, M., & Downs, T. (1998). A simple cost function for boosting. (Tech. Rep.). Queensland, Australia: Department of Computer Science and Electrical Engineering, University of Queensland. Available on-line: http://www.boosting.org/papers/FreDow98.ps.gz.
    • (1998) A Simple Cost Function for Boosting
    • Frean, M.1    Downs, T.2
  • 14
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: A statistical view of boosting. Annals of Statistics, 28, 337-374.
    • (2000) Annals of Statistics , vol.28 , pp. 337-374
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 15
    • 0031638384 scopus 로고    scopus 로고
    • Boosting in the limit: Maximizing the margin of learned ensembles
    • New York: AAAI Press
    • Grove, A., & Schuurmans, D. (1998). Boosting in the limit: Maximizing the margin of learned ensembles, in Proceedings of the Fifteenth National Conference on Artifical Intelligence (pp. 692-699). New York: AAAI Press. Available online: http://www.boosting.org/papers/GroSch98.ps.gz.
    • (1998) Proceedings of the Fifteenth National Conference on Artifical Intelligence , pp. 692-699
    • Grove, A.1    Schuurmans, D.2
  • 16
  • 17
    • 0036104545 scopus 로고    scopus 로고
    • Empirical margin distributions and bounding the generalization error of combined classifiers
    • Koltchinkskii, V., & Panchenko, D. (2002). Empirical margin distributions and bounding the generalization error of combined classifiers. Annals of Statistics, 30(1), 1-35.
    • (2002) Annals of Statistics , vol.30 , Issue.1 , pp. 1-35
    • Koltchinkskii, V.1    Panchenko, D.2
  • 18
    • 1542276975 scopus 로고    scopus 로고
    • An introduction to Boosting and leveraging
    • S. Mendelson & A. Smola (Eds.), Berlin: Springer-Verlag
    • Meir, R., & Rätsch, G. (2003). An introduction to Boosting and leveraging. In S. Mendelson & A. Smola (Eds.), Advanced lectures on machine learning (pp. 119-184) Berlin: Springer-Verlag. Available on-line: http://www.boosting.org/papers/MeiRae03.ps.gz.
    • (2003) Advanced Lectures on Machine Learning , pp. 119-184
    • Meir, R.1    Rätsch, G.2
  • 19
    • 1542337814 scopus 로고    scopus 로고
    • Unpublished doctoral dissertation, University of Technology, Berlin
    • Mika, S. (2002). Kernel Fisher discriminants. Unpublished doctoral dissertation, University of Technology, Berlin.
    • (2002) Kernel Fisher Discriminants
    • Mika, S.1
  • 20
    • 0342749314 scopus 로고    scopus 로고
    • An asymptotic analysis of AdaBoost in the binary classification case
    • L. Niklasson, M. Bodén, & T. Ziemke (Eds.). Berlin: Springer-Verlag
    • Onoda, T., Rätsch, G., & Müller, K.-R. (1998). An asymptotic analysis of AdaBoost in the binary classification case. In L. Niklasson, M. Bodén, & T. Ziemke (Eds.), Proc. of the Int. Conf. on Artificial Neural Networks (ICANN'98) (pp. 195-200). Berlin: Springer-Verlag. Available on-line: http://www.boosting.org/papers/ICANN98.ps.gz.
    • (1998) Proc. of the Int. Conf. on Artificial Neural Networks (ICANN'98) , pp. 195-200
    • Onoda, T.1    Rätsch, G.2    Müller, K.-R.3
  • 21
    • 0036709275 scopus 로고    scopus 로고
    • Constructing Boosting algorithms from SVMs: An application to one-class classification
    • Rätsch, G., Mika, S., Schlkopf, B., & Müller, K.-R. (2002). Constructing Boosting algorithms from SVMs: An application to one-class classification. IEEE P.A.M.I., 24(9), 1184-1199.
    • (2002) IEEE P.A.M.I. , vol.24 , Issue.9 , pp. 1184-1199
    • Rätsch, G.1    Mika, S.2    Schlkopf, B.3    Müller, K.-R.4
  • 23
    • 4243378943 scopus 로고    scopus 로고
    • Tech. Rep. London: Royal Holloway College
    • Rätsch, G., & Warmuth, M. (2001). Marginal boosting (Tech. Rep.). London: Royal Holloway College.
    • (2001) Marginal Boosting
    • Rätsch, G.1    Warmuth, M.2
  • 24
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • Schapire, R. E., Freund, Y., Bartlett, P., & Lee, W. S. (1998). Boosting the margin: A new explanation for the effectiveness of voting methods. Annals of Statistics, 26(5), 1651-1686.
    • (1998) Annals of Statistics , vol.26 , Issue.5 , pp. 1651-1686
    • Schapire, R.E.1    Freund, Y.2    Bartlett, P.3    Lee, W.S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.