-
1
-
-
0005040255
-
-
Tech. Rep. Chicago: University of Chicago
-
Amit, Y., & Blanchard, G. (2001). Multiple randomized classifiers: MRCL (Tech. Rep.). Chicago: University of Chicago. Available on-line: http://galton.uchicago.edu/~amit/Papers/mrcl.ps.gz.
-
(2001)
Multiple Randomized Classifiers: MRCL
-
-
Amit, Y.1
Blanchard, G.2
-
2
-
-
0001492549
-
Shape quantization and recognition with randomized trees
-
Amit, Y., & Geman, D. (1997). Shape quantization and recognition with randomized trees. Neural Computation, 9, 1545-1588.
-
(1997)
Neural Computation
, vol.9
, pp. 1545-1588
-
-
Amit, Y.1
Geman, D.2
-
3
-
-
84972545864
-
An analog of the minmax theorem for vector payoffs
-
Blackwell, D. (1956). An analog of the minmax theorem for vector payoffs. Pacific Journal of Mathematics, 6, 1-8.
-
(1956)
Pacific Journal of Mathematics
, vol.6
, pp. 1-8
-
-
Blackwell, D.1
-
5
-
-
1542277515
-
Generalization error bounds for aggregate classifiers
-
D. D. Denison, M. H. Hansen, C. C. Holmes, B. Mallick, & B. Yu (Eds.). Berlin: Springer-Verlag
-
Blanchard, G. (2003). Generalization error bounds for aggregate classifiers. In D. D. Denison, M. H. Hansen, C. C. Holmes, B. Mallick, & B. Yu (Eds.), Nonlinear estimation and classification. Berlin: Springer-Verlag.
-
(2003)
Nonlinear Estimation and Classification
-
-
Blanchard, G.1
-
6
-
-
0346786584
-
Arcing classifiers
-
Breiman, L. (1998a). Arcing classifiers. Annals of Statistics, 26(3), 801-849.
-
(1998)
Annals of Statistics
, vol.26
, Issue.3
, pp. 801-849
-
-
Breiman, L.1
-
7
-
-
0003929807
-
-
Tech. Rep. Berkeley Statistics Department, University of California at Berkeley
-
Breiman, L. (1998b). Prediction games and arcing algorithms (Tech. Rep.). Berkeley Statistics Department, University of California at Berkeley. Available on-line: ftp://ftp.stat.berkeley.edu/pub/users/breiman/games.ps.Z.
-
(1998)
Prediction Games and Arcing Algorithms
-
-
Breiman, L.1
-
8
-
-
0035478854
-
Random forests
-
Breiman, L. (2001). Random forests. Machine Learning, 45, 5-32.
-
(2001)
Machine Learning
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
10
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization
-
Dietterich, T. G. (2000). An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization. Machine Learning, 40, 139-158.
-
(2000)
Machine Learning
, vol.40
, pp. 139-158
-
-
Dietterich, T.G.1
-
11
-
-
0006444313
-
-
Tech. Rep. Queensland, Australia: Department of Computer Science and Electrical Engineering, University of Queensland
-
Frean, M., & Downs, T. (1998). A simple cost function for boosting. (Tech. Rep.). Queensland, Australia: Department of Computer Science and Electrical Engineering, University of Queensland. Available on-line: http://www.boosting.org/papers/FreDow98.ps.gz.
-
(1998)
A Simple Cost Function for Boosting
-
-
Frean, M.1
Downs, T.2
-
14
-
-
0034164230
-
Additive logistic regression: A statistical view of boosting
-
Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: A statistical view of boosting. Annals of Statistics, 28, 337-374.
-
(2000)
Annals of Statistics
, vol.28
, pp. 337-374
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
15
-
-
0031638384
-
Boosting in the limit: Maximizing the margin of learned ensembles
-
New York: AAAI Press
-
Grove, A., & Schuurmans, D. (1998). Boosting in the limit: Maximizing the margin of learned ensembles, in Proceedings of the Fifteenth National Conference on Artifical Intelligence (pp. 692-699). New York: AAAI Press. Available online: http://www.boosting.org/papers/GroSch98.ps.gz.
-
(1998)
Proceedings of the Fifteenth National Conference on Artifical Intelligence
, pp. 692-699
-
-
Grove, A.1
Schuurmans, D.2
-
17
-
-
0036104545
-
Empirical margin distributions and bounding the generalization error of combined classifiers
-
Koltchinkskii, V., & Panchenko, D. (2002). Empirical margin distributions and bounding the generalization error of combined classifiers. Annals of Statistics, 30(1), 1-35.
-
(2002)
Annals of Statistics
, vol.30
, Issue.1
, pp. 1-35
-
-
Koltchinkskii, V.1
Panchenko, D.2
-
18
-
-
1542276975
-
An introduction to Boosting and leveraging
-
S. Mendelson & A. Smola (Eds.), Berlin: Springer-Verlag
-
Meir, R., & Rätsch, G. (2003). An introduction to Boosting and leveraging. In S. Mendelson & A. Smola (Eds.), Advanced lectures on machine learning (pp. 119-184) Berlin: Springer-Verlag. Available on-line: http://www.boosting.org/papers/MeiRae03.ps.gz.
-
(2003)
Advanced Lectures on Machine Learning
, pp. 119-184
-
-
Meir, R.1
Rätsch, G.2
-
19
-
-
1542337814
-
-
Unpublished doctoral dissertation, University of Technology, Berlin
-
Mika, S. (2002). Kernel Fisher discriminants. Unpublished doctoral dissertation, University of Technology, Berlin.
-
(2002)
Kernel Fisher Discriminants
-
-
Mika, S.1
-
20
-
-
0342749314
-
An asymptotic analysis of AdaBoost in the binary classification case
-
L. Niklasson, M. Bodén, & T. Ziemke (Eds.). Berlin: Springer-Verlag
-
Onoda, T., Rätsch, G., & Müller, K.-R. (1998). An asymptotic analysis of AdaBoost in the binary classification case. In L. Niklasson, M. Bodén, & T. Ziemke (Eds.), Proc. of the Int. Conf. on Artificial Neural Networks (ICANN'98) (pp. 195-200). Berlin: Springer-Verlag. Available on-line: http://www.boosting.org/papers/ICANN98.ps.gz.
-
(1998)
Proc. of the Int. Conf. on Artificial Neural Networks (ICANN'98)
, pp. 195-200
-
-
Onoda, T.1
Rätsch, G.2
Müller, K.-R.3
-
21
-
-
0036709275
-
Constructing Boosting algorithms from SVMs: An application to one-class classification
-
Rätsch, G., Mika, S., Schlkopf, B., & Müller, K.-R. (2002). Constructing Boosting algorithms from SVMs: An application to one-class classification. IEEE P.A.M.I., 24(9), 1184-1199.
-
(2002)
IEEE P.A.M.I.
, vol.24
, Issue.9
, pp. 1184-1199
-
-
Rätsch, G.1
Mika, S.2
Schlkopf, B.3
Müller, K.-R.4
-
22
-
-
0342502195
-
Soft margins for AdaBoost
-
Rätsch, G., Onoda, T., & Müller, K.-R. (2001). Soft margins for AdaBoost. Machine Learning, 3(42), 287-320.
-
(2001)
Machine Learning
, vol.3
, Issue.42
, pp. 287-320
-
-
Rätsch, G.1
Onoda, T.2
Müller, K.-R.3
-
23
-
-
4243378943
-
-
Tech. Rep. London: Royal Holloway College
-
Rätsch, G., & Warmuth, M. (2001). Marginal boosting (Tech. Rep.). London: Royal Holloway College.
-
(2001)
Marginal Boosting
-
-
Rätsch, G.1
Warmuth, M.2
-
24
-
-
0032280519
-
Boosting the margin: A new explanation for the effectiveness of voting methods
-
Schapire, R. E., Freund, Y., Bartlett, P., & Lee, W. S. (1998). Boosting the margin: A new explanation for the effectiveness of voting methods. Annals of Statistics, 26(5), 1651-1686.
-
(1998)
Annals of Statistics
, vol.26
, Issue.5
, pp. 1651-1686
-
-
Schapire, R.E.1
Freund, Y.2
Bartlett, P.3
Lee, W.S.4
-
25
-
-
0003652453
-
-
Cambridge, MA: MIT Press
-
Smola, A. J., Bartlett, P. L., Schölkopf, B., & Schuurmans, D. (Eds.). (2000). Advances in large margin classifiers. Cambridge, MA: MIT Press.
-
(2000)
Advances in Large Margin Classifiers
-
-
Smola, A.J.1
Bartlett, P.L.2
Schölkopf, B.3
Schuurmans, D.4
|