메뉴 건너뛰기




Volumn , Issue , 2004, Pages 449-456

Robust feature induction for support vector machines

Author keywords

[No Author keywords available]

Indexed keywords

KERNELS; ROBUST FEATURE INDUCTION; SUPPORT VECTOR MACHINES (SVM); TRAINING DATA;

EID: 14344249147     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (4)

References (18)
  • 4
    • 0000551189 scopus 로고    scopus 로고
    • Popular ensemble methods: An empirical study
    • Opitz, D., & Macline, R. (1999). Popular Ensemble methods: An Empirical Study. Journal of AI Research pp. 169-198.
    • (1999) Journal of AI Research , pp. 169-198
    • Opitz, D.1    Macline, R.2
  • 6
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • Dietterich, T. G. (2000). An Experimental Comparison of Three Methods for constructing Ensembles of Decision Trees: Bagging, Boosting, and Randomization. Machine Learning, 40, 139-157.
    • (2000) Machine Learning , vol.40 , pp. 139-157
    • Dietterich, T.G.1
  • 12
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machine for pattern recognition
    • Burges, C.J.C. (1998). A Tutorial on Support Vector Machine for Pattern Recognition, Knowledge Discovery and Data Mining, 2(2).
    • (1998) Knowledge Discovery and Data Mining , vol.2 , Issue.2
    • Burges, C.J.C.1
  • 14
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • Schapire, R.E. & Singer, Y. (1999). Improved Boosting Algorithms using Confidence-rated Predictions, Machine Learning 37 (3): 291-336.
    • (1999) Machine Learning , vol.37 , Issue.3 , pp. 291-336
    • Schapire, R.E.1    Singer, Y.2
  • 16
    • 84860076712 scopus 로고    scopus 로고
    • TRECVID
    • TRECVID (2003). http://wwwnlpir.nist.gov/projects/tv2003/tv2003.html.
    • (2003)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.