-
1
-
-
0030039788
-
Yeast heat shock transcription factor N-terminal activation domains are unstructured as probed by heteronuclear NMR spectroscopy
-
Cho H, Liu C, Damberger F, Pelton J, Nelson H, Wemmer D. Yeast heat shock transcription factor N-terminal activation domains are unstructured as probed by heteronuclear NMR spectroscopy. Protein Sci 1996;5:262-269.
-
(1996)
Protein Sci
, vol.5
, pp. 262-269
-
-
Cho, H.1
Liu, C.2
Damberger, F.3
Pelton, J.4
Nelson, H.5
Wemmer, D.6
-
2
-
-
0036160052
-
Heat shock factor 1 and heat shock proteins: Critical partners in protection against acute cell injury
-
Christians ES, Yan L-J, Benjamin IJ. Heat shock factor 1 and heat shock proteins: critical partners in protection against acute cell injury. Crit Care Med 2002;30:S43-S50.
-
(2002)
Crit Care Med
, vol.30
-
-
Christians, E.S.1
Yan, L.-J.2
Benjamin, I.J.3
-
3
-
-
0024282788
-
Isolation of the gene encoding the S. cerevisiae heat shock transcription factor
-
Wiederrecht G, Seto D, Parker CS. Isolation of the gene encoding the S. cerevisiae heat shock transcription factor. Cell 1988;54:841-853.
-
(1988)
Cell
, vol.54
, pp. 841-853
-
-
Wiederrecht, G.1
Seto, D.2
Parker, C.S.3
-
4
-
-
0024282785
-
Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation
-
Sorger PK, Pelham HRB. Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation. Cell 1988;54:855-864.
-
(1988)
Cell
, vol.54
, pp. 855-864
-
-
Sorger, P.K.1
Pelham, H.R.B.2
-
5
-
-
0027958045
-
Crystal structure of the DNA binding domain of the heat shock transcription factor
-
Harrison CJ, Bohm AA, Nelson HCM. Crystal structure of the DNA binding domain of the heat shock transcription factor. Science 1994;263:224-227.
-
(1994)
Science
, vol.263
, pp. 224-227
-
-
Harrison, C.J.1
Bohm, A.A.2
Nelson, H.C.M.3
-
6
-
-
0032936785
-
A new use for the 'wing' of the 'winged' helix-turn-helix motif in the HSF-DNA cocrystal
-
Littlefield O, Nelson HCM. A new use for the 'wing' of the 'winged' helix-turn-helix motif in the HSF-DNA cocrystal. Nat Struct Biol 1999;6:464-470.
-
(1999)
Nat Struct Biol
, vol.6
, pp. 464-470
-
-
Littlefield, O.1
Nelson, H.C.M.2
-
7
-
-
0026621935
-
Trimerization of the heat shock transcription factor by a triple-stranded alpha-helical coiled-coil
-
Peteranderl R, Nelson HCM. Trimerization of the heat shock transcription factor by a triple-stranded alpha-helical coiled-coil. Biochem 1992;31:12272-12276.
-
(1992)
Biochem
, vol.31
, pp. 12272-12276
-
-
Peteranderl, R.1
Nelson, H.C.M.2
-
8
-
-
0033596861
-
Biochemical and biophysical characterization of the trimerization domain from the heat shock transcription factor
-
Peteranderl R, Rabenstein M, Shin YK, Lui CW, Wemmer DE, King DS, Nelson HCM. Biochemical and biophysical characterization of the trimerization domain from the heat shock transcription factor. Biochem 1999;38:3559-3569.
-
(1999)
Biochem
, vol.38
, pp. 3559-3569
-
-
Peteranderl, R.1
Rabenstein, M.2
Shin, Y.K.3
Lui, C.W.4
Wemmer, D.E.5
King, D.S.6
Nelson, H.C.M.7
-
9
-
-
0025122831
-
The yeast heat shock transcription factor contains a transcriptional activation domain whose activity is repressed under nonshock conditions
-
Nieto-Sotelo J, Wiederrecht G, Okuda A, Parker CS. The yeast heat shock transcription factor contains a transcriptional activation domain whose activity is repressed under nonshock conditions. Cell 1990;62:807-817.
-
(1990)
Cell
, vol.62
, pp. 807-817
-
-
Nieto-Sotelo, J.1
Wiederrecht, G.2
Okuda, A.3
Parker, C.S.4
-
10
-
-
0024989583
-
Yeast heat shock factor contains separable transient and sustained response transcriptional activators
-
Sorger PK. Yeast heat shock factor contains separable transient and sustained response transcriptional activators. Cell 1990;62: 793-805.
-
(1990)
Cell
, vol.62
, pp. 793-805
-
-
Sorger, P.K.1
-
11
-
-
0025965063
-
A conserved heptapeptide restrains the activity of the yeast heat shock transcription factor
-
Jakobsen BK, Pelham HR. A conserved heptapeptide restrains the activity of the yeast heat shock transcription factor. EMBO J 1991;10:369-375.
-
(1991)
EMBO J
, vol.10
, pp. 369-375
-
-
Jakobsen, B.K.1
Pelham, H.R.2
-
12
-
-
0035110553
-
Activation of heat shock transcription factor in yeast is not influenced by the levels of expression of heat shock proteins
-
Hjorth-Sorensen B, Hoffmann ER, Lissin NM, Sewell AK, Jakobsen BK. Activation of heat shock transcription factor in yeast is not influenced by the levels of expression of heat shock proteins. Mol Microbiol 2001;39:914-923.
-
(2001)
Mol Microbiol
, vol.39
, pp. 914-923
-
-
Hjorth-Sorensen, B.1
Hoffmann, E.R.2
Lissin, N.M.3
Sewell, A.K.4
Jakobsen, B.K.5
-
13
-
-
0032931842
-
A trans-activation domain in yeast heat shock transcription factor is essential for cell cycle progression during stress
-
Morano KA, Santoro N, Koch KA, Thiele DJ. A trans-activation domain in yeast heat shock transcription factor is essential for cell cycle progression during stress. Mol Cell Biol 1999;19:402-411.
-
(1999)
Mol Cell Biol
, vol.19
, pp. 402-411
-
-
Morano, K.A.1
Santoro, N.2
Koch, K.A.3
Thiele, D.J.4
-
14
-
-
0023701108
-
Constitutive binding of yeast heat shock factor to DNA in vivo
-
Jakobsen BK, Pelham HR. Constitutive binding of yeast heat shock factor to DNA in vivo. Mol Cell Biol 1988;8:5040-5042.
-
(1988)
Mol Cell Biol
, vol.8
, pp. 5040-5042
-
-
Jakobsen, B.K.1
Pelham, H.R.2
-
15
-
-
0024850646
-
Stable binding of Drosophila heat shock factor to head-to-head and tail-to-tail repeats of a conserved 5 bp recognition unit
-
Perisic O, Xiao H, Lis JT. Stable binding of Drosophila heat shock factor to head-to-head and tail-to-tail repeats of a conserved 5 bp recognition unit. Cell 1989;59:797-806.
-
(1989)
Cell
, vol.59
, pp. 797-806
-
-
Perisic, O.1
Xiao, H.2
Lis, J.T.3
-
16
-
-
0024852809
-
Trimerization of a yeast transcriptional activator via a coiled-coil motif
-
Sorger PK, Nelson HN. Trimerization of a yeast transcriptional activator via a coiled-coil motif. Cell 1989;59:807-813.
-
(1989)
Cell
, vol.59
, pp. 807-813
-
-
Sorger, P.K.1
Nelson, H.N.2
-
17
-
-
0025755922
-
Heat shock factor and the heat shock response
-
Sorger PK. Heat shock factor and the heat shock response. Cell 1991;65:363-366.
-
(1991)
Cell
, vol.65
, pp. 363-366
-
-
Sorger, P.K.1
-
18
-
-
0027491654
-
Identification of the C-terminal activator domain in yeast heat shock factor: Independent control of transient and sustained transcriptional activity
-
Chen Y, Barlev NA, Westergaard O, Jakobsen BK. Identification of the C-terminal activator domain in yeast heat shock factor: independent control of transient and sustained transcriptional activity. EMBO J 1993;12:5007-5018.
-
(1993)
EMBO J
, vol.12
, pp. 5007-5018
-
-
Chen, Y.1
Barlev, N.A.2
Westergaard, O.3
Jakobsen, B.K.4
-
19
-
-
0028321786
-
A short element required for turning off heat shock transcription factor: Evidence that phosphorylation enhances deactivation
-
Hoj A, Jakobsen BK. A short element required for turning off heat shock transcription factor: evidence that phosphorylation enhances deactivation. EMBO J 1994;13:2617-2624.
-
(1994)
EMBO J
, vol.13
, pp. 2617-2624
-
-
Hoj, A.1
Jakobsen, B.K.2
-
20
-
-
0034071558
-
Complex regulation of the yeast heat shock transcription factor
-
Bonner JJ, Carlson T, Fackenthal DL, Paddock D, Storey K, Lea K. Complex regulation of the yeast heat shock transcription factor. Mol Biol Cell 2000;11:1739-1751.
-
(2000)
Mol Biol Cell
, vol.11
, pp. 1739-1751
-
-
Bonner, J.J.1
Carlson, T.2
Fackenthal, D.L.3
Paddock, D.4
Storey, K.5
Lea, K.6
-
21
-
-
0347917179
-
Carboxyterminal region of the yeast heat shock factor contains two domains that make transcription independent of the TFIIH protein kinase
-
Sakurai H, Hashikawa N, Imazu H, Fukasawa T. Carboxyterminal region of the yeast heat shock factor contains two domains that make transcription independent of the TFIIH protein kinase. Genes to Cells 2003;8:951-961.
-
(2003)
Genes to Cells
, vol.8
, pp. 951-961
-
-
Sakurai, H.1
Hashikawa, N.2
Imazu, H.3
Fukasawa, T.4
-
22
-
-
1942518714
-
Phosphorylation of the yeast heat shock transcription factor is implicated in gene-specific activation dependent on the architecture of the heat shock element
-
Hashikawa N, Sakurai H. Phosphorylation of the yeast heat shock transcription factor is implicated in gene-specific activation dependent on the architecture of the heat shock element. Mol Cell Biol 2004;24:3648-3659.
-
(2004)
Mol Cell Biol
, vol.24
, pp. 3648-3659
-
-
Hashikawa, N.1
Sakurai, H.2
-
23
-
-
0026526179
-
Temperature-dependent regulation of a heterologous transcriptional activation domain fused to yeast heat shock transcription factor
-
Bonner JJ, Heyward S, Fackenthal DL. Temperature-dependent regulation of a heterologous transcriptional activation domain fused to yeast heat shock transcription factor. Mol Cell Biol 1992;12:1021-1030.
-
(1992)
Mol Cell Biol
, vol.12
, pp. 1021-1030
-
-
Bonner, J.J.1
Heyward, S.2
Fackenthal, D.L.3
-
24
-
-
0034108630
-
The yeast heat shock transcription factors changes conformation in response to superoxide and temperature
-
Lee S, Carlson T, Christian N, Lea K, Kedzie J, Reilly JP, Bonner JJ. The yeast heat shock transcription factors changes conformation in response to superoxide and temperature. Mol Biol Cell 2000;11:1753-1764.
-
(2000)
Mol Biol Cell
, vol.11
, pp. 1753-1764
-
-
Lee, S.1
Carlson, T.2
Christian, N.3
Lea, K.4
Kedzie, J.5
Reilly, J.P.6
Bonner, J.J.7
-
25
-
-
17744372861
-
Roles of the heat shock transcription factors in regulation of the heat shock response and beyond
-
Pirkkala L, Nykanen P, Sistonen L. Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J 2001;15:1118-1131.
-
(2001)
FASEB J
, vol.15
, pp. 1118-1131
-
-
Pirkkala, L.1
Nykanen, P.2
Sistonen, L.3
-
26
-
-
0034809610
-
A novel domain of the yeast heat shock factor that regulates its activation function
-
Sakurai H, Fukasawa T. A novel domain of the yeast heat shock factor that regulates its activation function. Biochem Biophys Res Comm 2001;285:696-701.
-
(2001)
Biochem Biophys Res Comm
, vol.285
, pp. 696-701
-
-
Sakurai, H.1
Fukasawa, T.2
-
28
-
-
0034672325
-
Estimation of protein secondary structure from circular dichroism spectra: Comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set
-
Sreerama N, Woody RW. Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal Bioch 2000;287:252-260.
-
(2000)
Anal Bioch
, vol.287
, pp. 252-260
-
-
Sreerama, N.1
Woody, R.W.2
-
29
-
-
0019873820
-
Estimation of protein secondary structure from circular dichroism
-
Provencher SW, Glockner J. Estimation of protein secondary structure from circular dichroism. Biochem 1981;20:33-37.
-
(1981)
Biochem
, vol.20
, pp. 33-37
-
-
Provencher, S.W.1
Glockner, J.2
-
30
-
-
0033562629
-
Analyzing protein circular dichroism spectra for accurate secondary structures
-
Johnson WC, Jr. Analyzing protein circular dichroism spectra for accurate secondary structures. Prot: Struct Funct Genet 1999;35: 307-312.
-
(1999)
Prot: Struct Funct Genet
, vol.35
, pp. 307-312
-
-
Johnson Jr., W.C.1
-
31
-
-
0027447099
-
A self-consistent method for the analysis of protein secondary structure from circular dichroism
-
Sreerama N, Woody RW. A self-consistent method for the analysis of protein secondary structure from circular dichroism. Anal Biochem 1993;209:32-44.
-
(1993)
Anal Biochem
, vol.209
, pp. 32-44
-
-
Sreerama, N.1
Woody, R.W.2
-
32
-
-
0030042763
-
Methods to estimate the conformation of proteins and polypeptides from circular dichroism data
-
Greenfield NJ. Methods to estimate the conformation of proteins and polypeptides from circular dichroism data. Anal Bioch 1996; 235:1-10.
-
(1996)
Anal Bioch
, vol.235
, pp. 1-10
-
-
Greenfield, N.J.1
-
33
-
-
0027190754
-
Evaluation of secondary structure of proteins from UV circular dichroism spectra using an unsupervised learning neural network
-
Andrade M, Chacon P, Merelo J, Moran F. Evaluation of secondary structure of proteins from UV circular dichroism spectra using an unsupervised learning neural network. Protein Eng 1993;6:383-390.
-
(1993)
Protein Eng
, vol.6
, pp. 383-390
-
-
Andrade, M.1
Chacon, P.2
Merelo, J.3
Moran, F.4
-
34
-
-
0029688766
-
Sherpa: A Macintosh-based expert system for the interpretation of ESI LC/MS and MS/MS of protein digests
-
Taylor JA, Walsh KA, Johnson RS. Sherpa: A Macintosh-based expert system for the interpretation of ESI LC/MS and MS/MS of protein digests. Rapid Commun Mass Spectrom 1996;10:679-687.
-
(1996)
Rapid Commun Mass Spectrom
, vol.10
, pp. 679-687
-
-
Taylor, J.A.1
Walsh, K.A.2
Johnson, R.S.3
-
35
-
-
0032539578
-
The structural aspects of limited proteolysis of native proteins
-
Hubbard SJ. The Structural aspects of limited proteolysis of native proteins. Biochim Biophys Acta 1998;1382:191-206.
-
(1998)
Biochim Biophys Acta
, vol.1382
, pp. 191-206
-
-
Hubbard, S.J.1
-
36
-
-
33947471319
-
Conformational aspects of synthetic polypeptides. VI. Hypochromic spectral studies of oligo-gamma-methyl-L-glutamate peptides
-
Goodman M, Listowsky I. Conformational aspects of synthetic polypeptides. VI. Hypochromic spectral studies of oligo-gamma-methyl-L-glutamate peptides. J Am Chem Soc 1962;84:3770-3771.
-
(1962)
J Am Chem Soc
, vol.84
, pp. 3770-3771
-
-
Goodman, M.1
Listowsky, I.2
-
37
-
-
0032444658
-
Trifluoroethanol and colleagues: Cosolvents come of age. Recent studies with peptides and proteins
-
Buck M. Trifluoroethanol and colleagues: cosolvents come of age. Recent studies with peptides and proteins. Quart Rev Biophys 1998;31:297-355.
-
(1998)
Quart Rev Biophys
, vol.31
, pp. 297-355
-
-
Buck, M.1
-
38
-
-
0035958656
-
The osmophobic effect: Natural selection of a thermodynamic force in protein folding
-
Bolen DW, Baskakov IV. The osmophobic effect: natural selection of a thermodynamic force in protein folding. J Mol Biol 2001;310: 955-963.
-
(2001)
J Mol Biol
, vol.310
, pp. 955-963
-
-
Bolen, D.W.1
Baskakov, I.V.2
-
39
-
-
0034987618
-
Interpreting the effects of small uncharged solutes on protein folding equilibria
-
Davis-Searles PR, Saunders AJ, Erie DA, Winzor DJ, Pielak GJ. Interpreting the effects of small uncharged solutes on protein folding equilibria. Annu Rev Biophys Biomol Struct 2001:30:271-306.
-
(2001)
Annu Rev Biophys Biomol Struct
, vol.30
, pp. 271-306
-
-
Davis-Searles, P.R.1
Saunders, A.J.2
Erie, D.A.3
Winzor, D.J.4
Pielak, G.J.5
-
40
-
-
0036153571
-
What does it mean to be nativelv unfolded?
-
Uversky VN. What does it mean to be nativelv unfolded? Eur J Biochem 2002;269:2-12.
-
(2002)
Eur J Biochem
, vol.269
, pp. 2-12
-
-
Uversky, V.N.1
-
41
-
-
0028054926
-
The role of trehalose synthesis for the acquisition of thennotolerance in yeast. II. Physiological concentrations of trehalose increase the thermal stability of proteins in vitro
-
Hottiger T, De Virgilio C, Hall MN, Boller T, Wiemken A. The role of trehalose synthesis for the acquisition of thennotolerance in yeast. II. Physiological concentrations of trehalose increase the thermal stability of proteins in vitro. Eur J Biochem 1994;219:187-193.
-
(1994)
Eur J Biochem
, vol.219
, pp. 187-193
-
-
Hottiger, T.1
De Virgilio, C.2
Hall, M.N.3
Boller, T.4
Wiemken, A.5
-
42
-
-
0029564954
-
Heat shock transcription factors: Structure and regulation
-
Wu C. Heat shock transcription factors: structure and regulation. Annu Rev Cell Dev Biol 1995;11:441-469.
-
(1995)
Annu Rev Cell Dev Biol
, vol.11
, pp. 441-469
-
-
Wu, C.1
-
43
-
-
0030810059
-
The ETS family member ERM contains an alpha-helical acidic activation domain that contacts TAFII60
-
Defossez P-A, Baert J-L, Monnot M, de Launoit Y. The ETS family member ERM contains an alpha-helical acidic activation domain that contacts TAFII60. Nucl Acids Res 1997;25:4455-4463.
-
(1997)
Nucl Acids Res
, vol.25
, pp. 4455-4463
-
-
Defossez, P.-A.1
Baert, J.-L.2
Monnot, M.3
De Launoit, Y.4
-
44
-
-
0032574795
-
Transcriptional activator-coactivator recognition: Nascent folding of a kinase-inducible transactivation domain predicts its structure on coactivator binding
-
Hua Q-X, Jia W-H, Bullock BP, Habener JF, Weist MA. Transcriptional activator-coactivator recognition: nascent folding of a kinase-inducible transactivation domain predicts its structure on coactivator binding. Biochem 1998;37:5858-5866.
-
(1998)
Biochem
, vol.37
, pp. 5858-5866
-
-
Hua, Q.-X.1
Jia, W.-H.2
Bullock, B.P.3
Habener, J.F.4
Weist, M.A.5
-
45
-
-
0040784176
-
Architectural principles for the structure and function of the glucocorticoid receptor tau 1 core activation domain
-
Warnmark A, Gustafsson J-A, Wright APH. Architectural principles for the structure and function of the glucocorticoid receptor tau 1 core activation domain. J Biol Chem 2000;275:15014-15018.
-
(2000)
J Biol Chem
, vol.275
, pp. 15014-15018
-
-
Warnmark, A.1
Gustafsson, J.-A.2
Wright, A.P.H.3
-
46
-
-
0035947672
-
The conformation of the glucocorticoid receptor AF1/tau1 domain induced by osmolyte binds co-regulatory proteins
-
Kumar R, Lee JC, Bolen DW, Thompson EB. The conformation of the glucocorticoid receptor AF1/tau1 domain induced by osmolyte binds co-regulatory proteins. J Biol Chem 2001;276:18146-18152.
-
(2001)
J Biol Chem
, vol.276
, pp. 18146-18152
-
-
Kumar, R.1
Lee, J.C.2
Bolen, D.W.3
Thompson, E.B.4
-
47
-
-
0037907487
-
Effects of sucrose on conformational equilibria and fluctuations within the native-state ensemble of proteins
-
Kim Y-S, Jones LS, Dong A, Kendrick BS, Chang BS, Manning MC, Randolph TW, Carpenter JF. Effects of sucrose on conformational equilibria and fluctuations within the native-state ensemble of proteins. Protein Sci 2003;12:1252-1261.
-
(2003)
Protein Sci
, vol.12
, pp. 1252-1261
-
-
Kim, Y.-S.1
Jones, L.S.2
Dong, A.3
Kendrick, B.S.4
Chang, B.S.5
Manning, M.C.6
Randolph, T.W.7
Carpenter, J.F.8
-
48
-
-
0032213339
-
Thermotolerance in Saccharomyces cerevisiae: The yin and yang of trehalose
-
Singer MA, Lindquist S. Thermotolerance in Saccharomyces cerevisiae: the yin and yang of trehalose. Trends Biotechnol 1998;16:460-468.
-
(1998)
Trends Biotechnol
, vol.16
, pp. 460-468
-
-
Singer, M.A.1
Lindquist, S.2
-
49
-
-
0032039542
-
Multiple effects of trehalose on protein folding in vitro and in vivo
-
Singer MA, Lindquist S. Multiple effects of trehalose on protein folding in vitro and in vivo. Mol Cell 1998;1:639-648.
-
(1998)
Mol Cell
, vol.1
, pp. 639-648
-
-
Singer, M.A.1
Lindquist, S.2
-
50
-
-
0035955743
-
Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses
-
Diamant S, Eliahu N, Rosenthal D, Goloubinoff P. Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses. J Biol Chem 2001;276: 39586-39591.
-
(2001)
J Biol Chem
, vol.276
, pp. 39586-39591
-
-
Diamant, S.1
Eliahu, N.2
Rosenthal, D.3
Goloubinoff, P.4
-
51
-
-
0038374325
-
Why is trehalose an exceptional protein stabilizer?
-
Kaushik JK, Bhat R. Why is trehalose an exceptional protein stabilizer? J Biol Chem 2003;278:26458-26465.
-
(2003)
J Biol Chem
, vol.278
, pp. 26458-26465
-
-
Kaushik, J.K.1
Bhat, R.2
-
52
-
-
0028925759
-
Structural characterization of a minimal functional transactivation domain from the human glucocorticiod receptor
-
Dahlman-Wright K, Baumann H, McEwan IJ, Almlof T, Wright APH, Gustafsson J-A, Hard T, Structural characterization of a minimal functional transactivation domain from the human glucocorticiod receptor. Proc Natl Acad Sci USA 1995;92:1699-1703.
-
(1995)
Proc Natl Acad Sci USA
, vol.92
, pp. 1699-1703
-
-
Dahlman-Wright, K.1
Baumann, H.2
McEwan, I.J.3
Almlof, T.4
Wright, A.P.H.5
Gustafsson, J.-A.6
Hard, T.7
-
53
-
-
0030070502
-
Structural studies of mutant glucocorticoid receptor transactivation domains establish a link between transactivation activity - and alpha-helix-forming potential in vitro
-
Dahlman-Wright K, McEwan IJ. Structural studies of mutant glucocorticoid receptor transactivation domains establish a link between transactivation activity - and alpha-helix-forming potential in vitro. Biochemistry 1996;35:1323-1327.
-
(1996)
Biochemistry
, vol.35
, pp. 1323-1327
-
-
Dahlman-Wright, K.1
McEwan, I.J.2
-
54
-
-
0030756675
-
Induced alpha-helix in the VP16 activation domain upon binding to a human TAF
-
Uesugi M, Nyanguile O, Lu H, Levine AJ, Verdine GL. Induced alpha-helix in the VP16 activation domain upon binding to a human TAF. Science 1997;277:1310-1313.
-
(1997)
Science
, vol.277
, pp. 1310-1313
-
-
Uesugi, M.1
Nyanguile, O.2
Lu, H.3
Levine, A.J.4
Verdine, G.L.5
-
55
-
-
0033521025
-
Characterization of the amino-terminal activation domain of peroxisome proliferator-activated receptor alpha. Importance of alpha-helical structure in the transactivating function
-
Hi R, Osada S, Yumoto N, Osumi T. Characterization of the amino-terminal activation domain of peroxisome proliferator-activated receptor alpha. Importance of alpha-helical structure in the transactivating function. J Biol Chem 1999;274:35152-35158.
-
(1999)
J Biol Chem
, vol.274
, pp. 35152-35158
-
-
Hi, R.1
Osada, S.2
Yumoto, N.3
Osumi, T.4
-
56
-
-
0033646066
-
Function of N-terminal transactivation domain of the estrogen receptor requires a potential alpha-helical structure and is negatively regulated by the a domain
-
Métivier R, Petit FG, Valotaire YFP. Function of N-terminal transactivation domain of the estrogen receptor requires a potential alpha-helical structure and is negatively regulated by the A domain. Mol Endocrinol 2000;14:1849-1871.
-
(2000)
Mol Endocrinol
, vol.14
, pp. 1849-1871
-
-
Métivier, R.1
Petit, F.G.2
Valotaire, Y.F.P.3
-
57
-
-
0037176877
-
Transcription activation by ultrabithorax Ib protein requires a predicted alpha-helical region
-
Tan XX, Bondos S, Li L, Matthews KS. Transcription activation by ultrabithorax Ib protein requires a predicted alpha-helical region. Biochemistry 2002;41:2774-2785.
-
(2002)
Biochemistry
, vol.41
, pp. 2774-2785
-
-
Tan, X.X.1
Bondos, S.2
Li, L.3
Matthews, K.S.4
-
58
-
-
0036468397
-
Coupling of folding and binding for unstructured proteins
-
Dyson HJ, Wright P, E. Coupling of folding and binding for unstructured proteins. Curr Opin Struct Biol 2002;12:54-60.
-
(2002)
Curr Opin Struct Biol
, vol.12
, pp. 54-60
-
-
Dyson, H.J.1
Wright, P.E.2
-
59
-
-
0035955710
-
The DNA-binding domain of yeast heat shock transcriptoin factor independently regulates both the N- and C-terminal activation domains
-
Bulman AL, Hubl ST, Nelson HCM. The DNA-binding domain of yeast heat shock transcriptoin factor independently regulates both the N- and C-terminal activation domains. J Biol Chem 2001;276:40254-40262.
-
(2001)
J Biol Chem
, vol.276
, pp. 40254-40262
-
-
Bulman, A.L.1
Hubl, S.T.2
Nelson, H.C.M.3
-
60
-
-
0037022268
-
Dynamic association of transcriptional activation domains and regulatory regions in Saccharomyces cerevisiae heat shock factor
-
Chen T, Parker CS. Dynamic association of transcriptional activation domains and regulatory regions in Saccharomyces cerevisiae heat shock factor. Proc Natl Acad Sci USA 2002;99:1200-1205.
-
(2002)
Proc Natl Acad Sci USA
, vol.99
, pp. 1200-1205
-
-
Chen, T.1
Parker, C.S.2
-
61
-
-
0027475243
-
Hsp90 chaperonins possess ATPase activity and bind heat shock transcription factors and peptidyl prolyl isomerases
-
Nadeau K, Das A, Walsh CT. Hsp90 chaperonins possess ATPase activity and bind heat shock transcription factors and peptidyl prolyl isomerases. J Biol Chem 1993;268:1479-1487.
-
(1993)
J Biol Chem
, vol.268
, pp. 1479-1487
-
-
Nadeau, K.1
Das, A.2
Walsh, C.T.3
-
62
-
-
0032563195
-
Requirement for Hsp90 and a CyP-40-type cyclophilin in negative regulation of the heat shock response
-
Duina AA, Kalton HM, Gaber RF. Requirement for Hsp90 and a CyP-40-type cyclophilin in negative regulation of the heat shock response. J Biol Chem 1998;273:18974-18978.
-
(1998)
J Biol Chem
, vol.273
, pp. 18974-18978
-
-
Duina, A.A.1
Kalton, H.M.2
Gaber, R.F.3
-
63
-
-
0033546709
-
Activator specific requirement for the general transcription factor HE in yeast
-
Sakurai H, Fukasawa T. Activator specific requirement for the general transcription factor HE in yeast. Biochem Biophys Res Comm 1999;261:734-739.
-
(1999)
Biochem Biophys Res Comm
, vol.261
, pp. 734-739
-
-
Sakurai, H.1
Fukasawa, T.2
-
64
-
-
0028047402
-
The role of trehalose synthesis for the acquisition of thermotolerance in yeast. I. Genetic evidence that trehalose is a thermoprotectant
-
De Virgilio C, Hottiger T, Dominguez J, Boller T, Wiemken A. The role of trehalose synthesis for the acquisition of thermotolerance in yeast. I. Genetic evidence that trehalose is a thermoprotectant. Eur J Biochem 1994;219:179-186.
-
(1994)
Eur J Biochem
, vol.219
, pp. 179-186
-
-
De Virgilio, C.1
Hottiger, T.2
Dominguez, J.3
Boller, T.4
Wiemken, A.5
-
65
-
-
0029861940
-
Synergy between trehalose and hsp104 for thermotolerance in Saccharomyces cerevisiae
-
Elliot B, Haltiwanger RS, Futcher B. Synergy between trehalose and hsp104 for thermotolerance in Saccharomyces cerevisiae. Genetics 1996;144:923-933.
-
(1996)
Genetics
, vol.144
, pp. 923-933
-
-
Elliot, B.1
Haltiwanger, R.S.2
Futcher, B.3
-
66
-
-
0002858113
-
Proteasome inhibitors cause induction of heat shock proteins and trehalose, which together confer thermotolerance in Saccharomyces cerevisiae
-
Lee DH, Goldberg AL. Proteasome inhibitors cause induction of heat shock proteins and trehalose, which together confer thermotolerance in Saccharomyces cerevisiae. Mol Cell Biol 1998;18:30-38.
-
(1998)
Mol Cell Biol
, vol.18
, pp. 30-38
-
-
Lee, D.H.1
Goldberg, A.L.2
-
67
-
-
0023649963
-
Rapid changes of heat and desiccation tolerance correlated with changes of trehalose content in Saccharomyces cerevisiae cells subjected to temperature shifts
-
Hottiger T, Boller T, Wiemken A, Rapid changes of heat and desiccation tolerance correlated with changes of trehalose content in Saccharomyces cerevisiae cells subjected to temperature shifts. FEBS Lett 1987;220:113-115.
-
(1987)
FEBS Lett
, vol.220
, pp. 113-115
-
-
Hottiger, T.1
Boller, T.2
Wiemken, A.3
-
68
-
-
0023650350
-
Trehalose accumulates in Saccharomyces cerevisiae during exposure to agents that induce heat shock response
-
Attfield PV. Trehalose accumulates in Saccharomyces cerevisiae during exposure to agents that induce heat shock response. FEBS Lett 1987;225:259-263.
-
(1987)
FEBS Lett
, vol.225
, pp. 259-263
-
-
Attfield, P.V.1
-
69
-
-
0035968318
-
Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals
-
Benaroudj N, Lee DH, Goldberg AL. Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. J Biol Chem 2001;276:24261-24267.
-
(2001)
J Biol Chem
, vol.276
, pp. 24261-24267
-
-
Benaroudj, N.1
Lee, D.H.2
Goldberg, A.L.3
-
70
-
-
0027121297
-
The 70-kilodalton heat-shock proteins of the SSA subfamily negatively modulate heat-shock-induced accumulation of trehalose and promote recovery from heat stress in the yeast, Saccharomyces cerevisiae
-
Hottiger T, De Virgilio C, Bell W, Boller T, Wiemken A. The 70-kilodalton heat-shock proteins of the SSA subfamily negatively modulate heat-shock-induced accumulation of trehalose and promote recovery from heat stress in the yeast, Saccharomyces cerevisiae. Eur J Biochem 1992;210:125-132.
-
(1992)
Eur J Biochem
, vol.210
, pp. 125-132
-
-
Hottiger, T.1
De Virgilio, C.2
Bell, W.3
Boller, T.4
Wiemken, A.5
-
71
-
-
0031764272
-
Evidence for the interplay between trehalose metabolism and Hsp104 in yeast
-
Iwahashi H, Nwaka S, Obuchi K, Komatsu Y. Evidence for the interplay between trehalose metabolism and Hsp104 in yeast. Appl Environ Microbiol 1998;64:4614-4617.
-
(1998)
Appl Environ Microbiol
, vol.64
, pp. 4614-4617
-
-
Iwahashi, H.1
Nwaka, S.2
Obuchi, K.3
Komatsu, Y.4
-
72
-
-
0031961703
-
Molecular biology of trehalose and the trehalases in the yeast Saccharomyces cerevisiae
-
Nwaka S, Holzer H. Molecular biology of trehalose and the trehalases in the yeast Saccharomyces cerevisiae. Prog Nucl Acid Res Mol Biol 1998;58:197-237.
-
(1998)
Prog Nucl Acid Res Mol Biol
, vol.58
, pp. 197-237
-
-
Nwaka, S.1
Holzer, H.2
|