메뉴 건너뛰기




Volumn 315, Issue 4, 2004, Pages 823-829

Nitric oxide production by bone cells is fluid shear stress rate dependent

Author keywords

Bone cells; Bone formation; Fluid flow; Fluid shear stress rate; MC3T3 E1; Mechanical loading; Microgravity; Nitric oxide; Osteoblasts; Parallel plate chamber

Indexed keywords

NITRIC OXIDE;

EID: 1342345247     PISSN: 0006291X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.bbrc.2004.01.138     Document Type: Article
Times cited : (159)

References (43)
  • 3
    • 0017654342 scopus 로고
    • Transport mechanism operating between blood supply and osteocytes in long bones
    • Piekarski K., Munro M. Transport mechanism operating between blood supply and osteocytes in long bones. Nature. 269:1977;80-82.
    • (1977) Nature , vol.269 , pp. 80-82
    • Piekarski, K.1    Munro, M.2
  • 4
    • 0018514836 scopus 로고
    • Microelectrode studies of stress-generated potentials in four-point bending of bone
    • Starkebaum W., Pollack S.R., Korostoff E. Microelectrode studies of stress-generated potentials in four-point bending of bone. J. Biomed. Mater. Res. 13:1979;729-751.
    • (1979) J. Biomed. Mater. Res. , vol.13 , pp. 729-751
    • Starkebaum, W.1    Pollack, S.R.2    Korostoff, E.3
  • 5
    • 0031975298 scopus 로고    scopus 로고
    • In vivo tracer transport through the lacunocanalicular system of rat bone in an environment devoid of mechanical loading
    • Knothe Tate M.L., Niederer P., Knothe U. In vivo tracer transport through the lacunocanalicular system of rat bone in an environment devoid of mechanical loading. Bone. 22:1998;107-117.
    • (1998) Bone , vol.22 , pp. 107-117
    • Knothe Tate, M.L.1    Niederer, P.2    Knothe, U.3
  • 6
    • 0033988305 scopus 로고    scopus 로고
    • An ex vivo model to study transport processes and fluid flow in loaded bone
    • Knothe Tate M.L., Knothe U. An ex vivo model to study transport processes and fluid flow in loaded bone. J. Biomech. 33:2000;247-254.
    • (2000) J. Biomech. , vol.33 , pp. 247-254
    • Knothe Tate, M.L.1    Knothe, U.2
  • 8
    • 0342678635 scopus 로고    scopus 로고
    • Mechanotransduction in bone, molecular and cellular biology of bone
    • M. Zaidi, E.E. Bittar, O.A. Adebanjo, & C.L.H. Huan. Stamford, Connecticut, USA: JAI Press
    • Burger E.H., Klein-Nulend J., Cowin S.C. Mechanotransduction in bone, molecular and cellular biology of bone. Zaidi M., Bittar E.E., Adebanjo O.A., Huan C.L.H. Advances in Organ Biology. 1998;123-136 JAI Press, Stamford, Connecticut, USA.
    • (1998) Advances in Organ Biology , pp. 123-136
    • Burger, E.H.1    Klein-Nulend, J.2    Cowin, S.C.3
  • 9
    • 0032895922 scopus 로고    scopus 로고
    • Mechanotransduction in bone - Role of the lacuno-canalicular network
    • Burger E.H., Klein-Nulend J. Mechanotransduction in bone - role of the lacuno-canalicular network. FASEB J. 13:1999;S101-S112.
    • (1999) FASEB J. , vol.13
    • Burger, E.H.1    Klein-Nulend, J.2
  • 10
    • 0036829261 scopus 로고    scopus 로고
    • A case for strain-induced fluid flow as a regulator of BMU-coupling and osteonal alignment
    • Smit T.H., Burger E.H., Huyghe J.M. A case for strain-induced fluid flow as a regulator of BMU-coupling and osteonal alignment. J. Bone Miner. Res. 11:2002;2021-2029.
    • (2002) J. Bone Miner. Res. , vol.11 , pp. 2021-2029
    • Smit, T.H.1    Burger, E.H.2    Huyghe, J.M.3
  • 11
    • 1342334753 scopus 로고
    • Fluid flow in bone: Stimulated release at remodeling mediators
    • Frangos J.A., Johnson D. Fluid flow in bone: stimulated release at remodeling mediators. Biorheology. 32:1995;187-187.
    • (1995) Biorheology , vol.32 , pp. 187-187
    • Frangos, J.A.1    Johnson, D.2
  • 12
    • 0029617377 scopus 로고
    • Pulsating fluid flow increases nitric oxide (NO) synthesis by osteocytes but not periosteal fibroblasts - Correlation with prostaglandin upregulation
    • Klein-Nulend J., Semeins C.M., Ajubi N.E., Nijweide P.J., Burger E.H. Pulsating fluid flow increases nitric oxide (NO) synthesis by osteocytes but not periosteal fibroblasts - correlation with prostaglandin upregulation. Biochem. Biophys. Res. Commun. 217:1995;640-648.
    • (1995) Biochem. Biophys. Res. Commun. , vol.217 , pp. 640-648
    • Klein-Nulend, J.1    Semeins, C.M.2    Ajubi, N.E.3    Nijweide, P.J.4    Burger, E.H.5
  • 13
    • 0028918257 scopus 로고
    • Mechanical loading stimulates the release of transforming growth factor-beta activity by cultured mouse calvariae and periosteal cells
    • Klein-Nulend J., Roelofsen J., Sterck J.G.H., Semeins C.M., Burger E.H. Mechanical loading stimulates the release of transforming growth factor-beta activity by cultured mouse calvariae and periosteal cells. J. Cell Physiol. 163:1995;115-119.
    • (1995) J. Cell Physiol. , vol.163 , pp. 115-119
    • Klein-Nulend, J.1    Roelofsen, J.2    Sterck, J.G.H.3    Semeins, C.M.4    Burger, E.H.5
  • 15
    • 0029841159 scopus 로고    scopus 로고
    • Fluid flow stimulates rapid and continuous release of nitric oxide in osteoblasts
    • Johnson D.L., McAllister T.N., Frangos J.A. Fluid flow stimulates rapid and continuous release of nitric oxide in osteoblasts. Am. J. Physiol. 271:1996;E205-E208.
    • (1996) Am. J. Physiol. , vol.271
    • Johnson, D.L.1    McAllister, T.N.2    Frangos, J.A.3
  • 19
    • 0030846047 scopus 로고    scopus 로고
    • Mechanotransduction in bone: Osteoblasts are more responsive to fluid forces than mechanical strain
    • Owan I., Burr D.B., Turner C.H., Qiu J., Tu Y., Onyia J.E., Duncan R.L. Mechanotransduction in bone: osteoblasts are more responsive to fluid forces than mechanical strain. Am. J. Physiol. 273:1997;C810-C815.
    • (1997) Am. J. Physiol. , vol.273
    • Owan, I.1    Burr, D.B.2    Turner, C.H.3    Qiu, J.4    Tu, Y.5    Onyia, J.E.6    Duncan, R.L.7
  • 21
    • 0028386524 scopus 로고
    • A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses
    • Weinbaum S., Cowin S.C., Zeng Y. A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J. Biomech. 27:1994;339-360.
    • (1994) J. Biomech. , vol.27 , pp. 339-360
    • Weinbaum, S.1    Cowin, S.C.2    Zeng, Y.3
  • 22
    • 0032983135 scopus 로고    scopus 로고
    • Bone poroelasticity
    • Cowin S.C. Bone poroelasticity. J. Biomech. 32:1999;217-238.
    • (1999) J. Biomech. , vol.32 , pp. 217-238
    • Cowin, S.C.1
  • 23
    • 0029111672 scopus 로고
    • Mechanotransduction in bone: Role of strain rate
    • Turner C.H., Owan I., Takano Y. Mechanotransduction in bone: role of strain rate. Am. J. Physiol. 269:1995;E438-E442.
    • (1995) Am. J. Physiol. , vol.269
    • Turner, C.H.1    Owan, I.2    Takano, Y.3
  • 24
    • 0032190413 scopus 로고    scopus 로고
    • Strain rate as a controlling influence on adaptive modeling in response to dynamic loading of the ulna in growing male rats
    • Mosley J.R., Lanyon L.E. Strain rate as a controlling influence on adaptive modeling in response to dynamic loading of the ulna in growing male rats. Bone. 23:1998;313-318.
    • (1998) Bone , vol.23 , pp. 313-318
    • Mosley, J.R.1    Lanyon, L.E.2
  • 25
    • 0035882428 scopus 로고    scopus 로고
    • Inhibition of osteopenia by low magnitude, high-frequency mechanical stimuli
    • Rubin C.T., Sommerfeldt D.W., Judex S., Qin Y.X. Inhibition of osteopenia by low magnitude, high-frequency mechanical stimuli. Drug Discov. Today. 6:2001;848-858.
    • (2001) Drug Discov. Today , vol.6 , pp. 848-858
    • Rubin, C.T.1    Sommerfeldt, D.W.2    Judex, S.3    Qin, Y.X.4
  • 26
    • 0033622817 scopus 로고    scopus 로고
    • Quantifying the strain history of bone: Spatial uniformity and self-similarity of low-magnitude strains
    • Fritton S.P., McLeod J., Rubin C.T. Quantifying the strain history of bone: spatial uniformity and self-similarity of low-magnitude strains. J. Biomech. 33:2000;317-325.
    • (2000) J. Biomech. , vol.33 , pp. 317-325
    • Fritton, S.P.1    McLeod, J.2    Rubin, C.T.3
  • 27
    • 0031837165 scopus 로고    scopus 로고
    • Type of physical activity, muscle strength, and pubertal stage as determinants of bone mineral density and bone area in adolescent boys
    • Nordstrom P., Pettersson U., Lorentzon R. Type of physical activity, muscle strength, and pubertal stage as determinants of bone mineral density and bone area in adolescent boys. J. Bone Miner. Res. 13:1998;1141-1148.
    • (1998) J. Bone Miner. Res. , vol.13 , pp. 1141-1148
    • Nordstrom, P.1    Pettersson, U.2    Lorentzon, R.3
  • 28
    • 0032818443 scopus 로고    scopus 로고
    • Changes of cancellous bone mass in rat mandibular condyle following ovariectomy
    • Tanaka M., Ejiri S., Nakajima M., Kohno S., Ozawa H. Changes of cancellous bone mass in rat mandibular condyle following ovariectomy. Bone. 25:1999;339-347.
    • (1999) Bone , vol.25 , pp. 339-347
    • Tanaka, M.1    Ejiri, S.2    Nakajima, M.3    Kohno, S.4    Ozawa, H.5
  • 30
    • 1342334755 scopus 로고    scopus 로고
    • Nitric oxide is an early mediator of the induction of bone formation by mechanical stimulation
    • Fox S.W., Chambers T.J., Chow J.W.M. Nitric oxide is an early mediator of the induction of bone formation by mechanical stimulation. Bone. 19:1996;687-687.
    • (1996) Bone , vol.19 , pp. 687-687
    • Fox, S.W.1    Chambers, T.J.2    Chow, J.W.M.3
  • 31
    • 0029940159 scopus 로고    scopus 로고
    • Nitric oxide inhibitor L-NAME suppresses mechanically induced bone formation in rats
    • Turner C.H., Takano Y., Owan I., Murrell G.A. Nitric oxide inhibitor L-NAME suppresses mechanically induced bone formation in rats. Am. J. Physiol. 270:1996;E634-E639.
    • (1996) Am. J. Physiol. , vol.270
    • Turner, C.H.1    Takano, Y.2    Owan, I.3    Murrell, G.A.4
  • 34
    • 0021322767 scopus 로고
    • Regulation of bone formation by applied dynamic loads
    • Rubin C.T., Lanyon L.E. Regulation of bone formation by applied dynamic loads. J. Bone Joint Surg. Am. 66:1984;397-402.
    • (1984) J. Bone Joint Surg. Am. , vol.66 , pp. 397-402
    • Rubin, C.T.1    Lanyon, L.E.2
  • 35
    • 67149104937 scopus 로고    scopus 로고
    • Stochastic resonance in osteogenic response to mechanical loading
    • 02-0561fje
    • S.M. Tanaka, I. Alam, C.H. Turner, Stochastic resonance in osteogenic response to mechanical loading, FASEB J. (2002) 02-0561fje.
    • (2002) FASEB J.
    • Tanaka, S.M.1    Alam, I.2    Turner, C.H.3
  • 37
    • 0021182206 scopus 로고
    • Skeletal calcium homeostasis and countermeasures to prevent disuse osteoporosis
    • Schneider V.S., McDonald J. Skeletal calcium homeostasis and countermeasures to prevent disuse osteoporosis. Calcif. Tissue Int. 36:1984;S144-S151.
    • (1984) Calcif. Tissue Int. , vol.36
    • Schneider, V.S.1    McDonald, J.2
  • 40
    • 0031949392 scopus 로고    scopus 로고
    • Effects of gravitational changes on the bone system in vitro and in vivo
    • Vico L., Lafage-Proust M.-H., Alexandre C. Effects of gravitational changes on the bone system in vitro and in vivo. Bone. 22:1998;95S-100S.
    • (1998) Bone , vol.22
    • Vico, L.1    Lafage-Proust, M.-H.2    Alexandre, C.3
  • 41
    • 0031946810 scopus 로고    scopus 로고
    • Microgravity and bone cell mechanosensitivity
    • Burger E.H., Klein-Nulend J. Microgravity and bone cell mechanosensitivity. Bone. 22:1998;127S-130S.
    • (1998) Bone , vol.22
    • Burger, E.H.1    Klein-Nulend, J.2
  • 42
    • 0034621881 scopus 로고    scopus 로고
    • Effects of mechanical forces on maintenance and adaptation of form in trabecular bone
    • Huiskes R., Ruimerman R., van Lenthe G.H., Janssen J.D. Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature. 405:2000;704-706.
    • (2000) Nature , vol.405 , pp. 704-706
    • Huiskes, R.1    Ruimerman, R.2    Van Lenthe, G.H.3    Janssen, J.D.4
  • 43
    • 0036978681 scopus 로고    scopus 로고
    • A 3-dimensional computer model to simulate trabecular bone metabolism
    • Ruimerman R., Van Rietbergen B., Huiskes R. A 3-dimensional computer model to simulate trabecular bone metabolism. Biorheology. 40:2003;315-320.
    • (2003) Biorheology , vol.40 , pp. 315-320
    • Ruimerman, R.1    Van Rietbergen, B.2    Huiskes, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.