-
1
-
-
0025725905
-
Instance-based learning algorithms
-
Aha, D. W., Kibler, D., & Albert, M. K. (1991). Instance-based learning algorithms. Machine Learning, 6, 37-66.
-
(1991)
Machine Learning
, vol.6
, pp. 37-66
-
-
Aha, D.W.1
Kibler, D.2
Albert, M.K.3
-
4
-
-
0041968086
-
Progress on vision through learning at George Mason University
-
Bala, J. W., Michalski, R. S., & Pachowicz, P. W. (1994). Progress on vision through learning at George Mason University. In Proceedings of the 1994 Image Understanding Workshop, pp. 191-207.
-
(1994)
Proceedings of the 1994 Image Understanding Workshop
, pp. 191-207
-
-
Bala, J.W.1
Michalski, R.S.2
Pachowicz, P.W.3
-
5
-
-
0042969843
-
AQ17 - A multistrategy learning system: The method and user's guide
-
George Mason University, Machine Learning and Inference Laboratory, Fairfax, VA
-
Bloedorn, E., Wnek, J., Michalski, R. S., & Kaufman, K. (1993). AQ17 - a multistrategy learning system: the method and user's guide. Technical Report No. MLI 93-12, George Mason University, Machine Learning and Inference Laboratory, Fairfax, VA.
-
(1993)
Technical Report No. MLI 93-12
-
-
Bloedorn, E.1
Wnek, J.2
Michalski, R.S.3
Kaufman, K.4
-
8
-
-
0023294265
-
Generating and generalizing models of visual objects
-
Connell, J. H., & Brady, M. (1987). Generating and generalizing models of visual objects. Artificial Intelligence, 34, 159-183.
-
(1987)
Artificial Intelligence
, vol.34
, pp. 159-183
-
-
Connell, J.H.1
Brady, M.2
-
9
-
-
0042315010
-
Automatic generation of object class descriptions using symbolic learning techniques
-
Cromwell, R. L., & Kak, A. C. (1991). Automatic generation of object class descriptions using symbolic learning techniques. In Proceedings of AAAI-91, pp. 710-717
-
(1991)
Proceedings of AAAI-91
, pp. 710-717
-
-
Cromwell, R.L.1
Kak, A.C.2
-
10
-
-
0003578240
-
An empirical study of learning speed in back-propagation networks
-
Department of Computer Science, Carnegie-Mellon University, Pittsburgh, PA
-
Fahlman, S. E. (1988). An empirical study of learning speed in back-propagation networks. Techical Report No. CMU-CS-88-182, Department of Computer Science, Carnegie-Mellon University, Pittsburgh, PA.
-
(1988)
Techical Report No. CMU-CS-88-182
-
-
Fahlman, S.E.1
-
11
-
-
0026995495
-
ChiMerge: Discretization of numeric attributes
-
Kerber, R. (1992). ChiMerge: discretization of numeric attributes. In Proceedings of AAAI-92, pp. 123-128.
-
(1992)
Proceedings of AAAI-92
, pp. 123-128
-
-
Kerber, R.1
-
12
-
-
85033308238
-
Learning descriptions of 2D blob-like shapes for object recognition in X-ray images: An initial study
-
George Mason University, Machine Learning and Inference Laboratory, Fairfax, VA
-
Maloof, M. A., & Michalski, R. S. (1994). Learning descriptions of 2D blob-like shapes for object recognition in X-ray images: an initial study. Technical Report No. MLI 94-4, George Mason University, Machine Learning and Inference Laboratory, Fairfax, VA.
-
(1994)
Technical Report No. MLI 94-4
-
-
Maloof, M.A.1
Michalski, R.S.2
-
14
-
-
0041968081
-
Recognizing blasting caps in X-ray images
-
Maloof, M. A., Duric, Z., Michalski, R. S., & Rosenfeld, A. (1996). Recognizing blasting caps in X-ray images. In Proceedings of the 1996 Image Understanding Workshop, pp. 1257-1261.
-
(1996)
Proceedings of the 1996 Image Understanding Workshop
, pp. 1257-1261
-
-
Maloof, M.A.1
Duric, Z.2
Michalski, R.S.3
Rosenfeld, A.4
-
17
-
-
0015725625
-
AQVAL/1-computer implementation of a variable-valued logic system VL1 and examples of its application to pattern recognition
-
Michalski, R. S. (1973). AQVAL/1-computer implementation of a variable-valued logic system VL1 and examples of its application to pattern recognition. In Proceedings of the First International Joint Conference on Pattern Recognition, pp. 3-17.
-
(1973)
Proceedings of the First International Joint Conference on Pattern Recognition
, pp. 3-17
-
-
Michalski, R.S.1
-
19
-
-
0003046840
-
A theory and methodology of inductive learning
-
R. S. Michalski, J. G. Carbonell & T. M. Mitchell (Eds), San Francisco, CA: Kaufmann
-
Michalski, R. S. (1983). A theory and methodology of inductive learning. In R. S. Michalski, J. G. Carbonell & T. M. Mitchell (Eds), Machine learning: Vol. I. An artificial intelligence approach (pp. 83-134). San Francisco, CA: Kaufmann.
-
(1983)
Machine Learning: Vol. I. An Artificial Intelligence Approach
, vol.1
, pp. 83-134
-
-
Michalski, R.S.1
-
20
-
-
0003262526
-
Inferential theory of learning: Developing foundations for multistrategy learning
-
R. S. Michalski & G. Tecuci (Eds), San Francisco, CA: Kaufmann
-
Michalski, R. S. (1994). Inferential theory of learning: developing foundations for multistrategy learning. In R. S. Michalski & G. Tecuci (Eds), Machine learning: Vol. IV. A multistrategy approach (pp. 3-61). San Francisco, CA: Kaufmann.
-
(1994)
Machine Learning: Vol. IV. A Multistrategy Approach
, vol.4
, pp. 3-61
-
-
Michalski, R.S.1
-
21
-
-
0042969825
-
Machine vision and learning: Research issues and directions
-
George Mason University, Machine Learning and Inference Laboratory, Fairfax, VA
-
Michalski, R. S., Rosenfeld, A., & Aloimonos, Y. (1994). Machine vision and learning: research issues and directions. Technical Report No. MLI 94-6, George Mason University, Machine Learning and Inference Laboratory, Fairfax, VA.
-
(1994)
Technical Report No. MLI 94-6
-
-
Michalski, R.S.1
Rosenfeld, A.2
Aloimonos, Y.3
-
22
-
-
0042969826
-
The MIST methodology and its application to natural scene segmentation
-
Michalski, R. S., Zhang, Q., Maloof, M. A., & Bloedorn E. (1996). The MIST methodology and its application to natural scene segmentation. In Proceedings of the 1996 Image Understanding Workshop, pp. 1474-1479.
-
(1996)
Proceedings of the 1996 Image Understanding Workshop
, pp. 1474-1479
-
-
Michalski, R.S.1
Zhang, Q.2
Maloof, M.A.3
Bloedorn, E.4
-
23
-
-
0003612091
-
-
West Sussex: Horwood
-
Michie, D., Spiegelhalter, D. J., & Taylor, C. C. (1994). Machine learning, neural, and statistical classification. West Sussex: Horwood.
-
(1994)
Machine Learning, Neural, and Statistical Classification
-
-
Michie, D.1
Spiegelhalter, D.J.2
Taylor, C.C.3
-
24
-
-
0041968076
-
Texture recognition through machine learning and concept optimization
-
George Mason University, Machine Learning and Inference Laboratory, Fairfax, VA
-
Pachowicz, P. W., & Bala, J. W. (1991). Texture recognition through machine learning and concept optimization. Technical Report No. MLI 91-4, George Mason University, Machine Learning and Inference Laboratory, Fairfax, VA.
-
(1991)
Technical Report No. MLI 91-4
-
-
Pachowicz, P.W.1
Bala, J.W.2
-
25
-
-
33744584654
-
Induction of decision trees
-
Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1, 81-106.
-
(1986)
Machine Learning
, vol.1
, pp. 81-106
-
-
Quinlan, J.R.1
-
27
-
-
0042468635
-
GEST: A learning computer vision system that recognizes hand gestures
-
R. S. Michalski & G. Tecuci (Eds), San Francisco, CA: Kaufmann
-
Segen, J. (1994). GEST: a learning computer vision system that recognizes hand gestures. In R. S. Michalski & G. Tecuci (Eds), Machine learning: Vol. IV. A multistrategy approach (pp. 621-634). San Francisco, CA: Kaufmann.
-
(1994)
Machine Learning: Vol. IV. A Multistrategy Approach
, vol.4
, pp. 621-634
-
-
Segen, J.1
-
28
-
-
0020883650
-
An appraisal of a decision tree approach to image classification
-
Shepherd, B. A. (1983). An appraisal of a decision tree approach to image classification. In Proceedings of IJCAI-83, pp. 473-475.
-
(1983)
Proceedings of IJCAI-83
, pp. 473-475
-
-
Shepherd, B.A.1
-
29
-
-
0003539213
-
The MONK'S problems: A performance comparison of different learning algorithms
-
Department of Computer Science, Carnegie-Mellon University, Pittsburgh, PA
-
Thrun, S. B. et al. (1991). The MONK'S problems: a performance comparison of different learning algorithms. Technical Report No. CMU-CS-91-197, Department of Computer Science, Carnegie-Mellon University, Pittsburgh, PA.
-
(1991)
Technical Report No. CMU-CS-91-197
-
-
Thrun, S.B.1
-
30
-
-
0003932630
-
-
San Francisco, CA: Kaufmann
-
Weiss, S. M., & Kulikowski, C. A. (1992). Computer systems that learn: Classification and prediction methods from statistics, neural nets, machine learning and expert systems. San Francisco, CA: Kaufmann.
-
(1992)
Computer Systems That Learn: Classification and Prediction Methods from Statistics, Neural Nets, Machine Learning and Expert Systems
-
-
Weiss, S.M.1
Kulikowski, C.A.2
-
32
-
-
0003978401
-
Selective induction learning system AQ15c: The method and user's guide
-
George Mason University, Machine Learning and Inference Laboratory, Fairfax, VA
-
Wnek, J., Kaufman, K., Bloedorn, E., & Michalski, R. S. (1995). Selective induction learning system AQ15c: the method and user's guide. Technical Report No. MLI 95-4, George Mason University, Machine Learning and Inference Laboratory, Fairfax, VA.
-
(1995)
Technical Report No. MLI 95-4
-
-
Wnek, J.1
Kaufman, K.2
Bloedorn, E.3
Michalski, R.S.4
|