메뉴 건너뛰기




Volumn 12, Issue 1, 1997, Pages 11-20

Learning symbolic descriptions of shape for object recognition in X-ray images

Author keywords

[No Author keywords available]

Indexed keywords

FEEDFORWARD NEURAL NETWORKS; IMAGE ANALYSIS; LEARNING SYSTEMS; X RAY RADIOGRAPHY;

EID: 0030778013     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0957-4174(96)00076-0     Document Type: Article
Times cited : (6)

References (34)
  • 5
    • 0042969843 scopus 로고
    • AQ17 - A multistrategy learning system: The method and user's guide
    • George Mason University, Machine Learning and Inference Laboratory, Fairfax, VA
    • Bloedorn, E., Wnek, J., Michalski, R. S., & Kaufman, K. (1993). AQ17 - a multistrategy learning system: the method and user's guide. Technical Report No. MLI 93-12, George Mason University, Machine Learning and Inference Laboratory, Fairfax, VA.
    • (1993) Technical Report No. MLI 93-12
    • Bloedorn, E.1    Wnek, J.2    Michalski, R.S.3    Kaufman, K.4
  • 8
    • 0023294265 scopus 로고
    • Generating and generalizing models of visual objects
    • Connell, J. H., & Brady, M. (1987). Generating and generalizing models of visual objects. Artificial Intelligence, 34, 159-183.
    • (1987) Artificial Intelligence , vol.34 , pp. 159-183
    • Connell, J.H.1    Brady, M.2
  • 9
    • 0042315010 scopus 로고
    • Automatic generation of object class descriptions using symbolic learning techniques
    • Cromwell, R. L., & Kak, A. C. (1991). Automatic generation of object class descriptions using symbolic learning techniques. In Proceedings of AAAI-91, pp. 710-717
    • (1991) Proceedings of AAAI-91 , pp. 710-717
    • Cromwell, R.L.1    Kak, A.C.2
  • 10
    • 0003578240 scopus 로고
    • An empirical study of learning speed in back-propagation networks
    • Department of Computer Science, Carnegie-Mellon University, Pittsburgh, PA
    • Fahlman, S. E. (1988). An empirical study of learning speed in back-propagation networks. Techical Report No. CMU-CS-88-182, Department of Computer Science, Carnegie-Mellon University, Pittsburgh, PA.
    • (1988) Techical Report No. CMU-CS-88-182
    • Fahlman, S.E.1
  • 11
    • 0026995495 scopus 로고
    • ChiMerge: Discretization of numeric attributes
    • Kerber, R. (1992). ChiMerge: discretization of numeric attributes. In Proceedings of AAAI-92, pp. 123-128.
    • (1992) Proceedings of AAAI-92 , pp. 123-128
    • Kerber, R.1
  • 12
    • 85033308238 scopus 로고
    • Learning descriptions of 2D blob-like shapes for object recognition in X-ray images: An initial study
    • George Mason University, Machine Learning and Inference Laboratory, Fairfax, VA
    • Maloof, M. A., & Michalski, R. S. (1994). Learning descriptions of 2D blob-like shapes for object recognition in X-ray images: an initial study. Technical Report No. MLI 94-4, George Mason University, Machine Learning and Inference Laboratory, Fairfax, VA.
    • (1994) Technical Report No. MLI 94-4
    • Maloof, M.A.1    Michalski, R.S.2
  • 17
    • 0015725625 scopus 로고
    • AQVAL/1-computer implementation of a variable-valued logic system VL1 and examples of its application to pattern recognition
    • Michalski, R. S. (1973). AQVAL/1-computer implementation of a variable-valued logic system VL1 and examples of its application to pattern recognition. In Proceedings of the First International Joint Conference on Pattern Recognition, pp. 3-17.
    • (1973) Proceedings of the First International Joint Conference on Pattern Recognition , pp. 3-17
    • Michalski, R.S.1
  • 19
    • 0003046840 scopus 로고
    • A theory and methodology of inductive learning
    • R. S. Michalski, J. G. Carbonell & T. M. Mitchell (Eds), San Francisco, CA: Kaufmann
    • Michalski, R. S. (1983). A theory and methodology of inductive learning. In R. S. Michalski, J. G. Carbonell & T. M. Mitchell (Eds), Machine learning: Vol. I. An artificial intelligence approach (pp. 83-134). San Francisco, CA: Kaufmann.
    • (1983) Machine Learning: Vol. I. An Artificial Intelligence Approach , vol.1 , pp. 83-134
    • Michalski, R.S.1
  • 20
    • 0003262526 scopus 로고
    • Inferential theory of learning: Developing foundations for multistrategy learning
    • R. S. Michalski & G. Tecuci (Eds), San Francisco, CA: Kaufmann
    • Michalski, R. S. (1994). Inferential theory of learning: developing foundations for multistrategy learning. In R. S. Michalski & G. Tecuci (Eds), Machine learning: Vol. IV. A multistrategy approach (pp. 3-61). San Francisco, CA: Kaufmann.
    • (1994) Machine Learning: Vol. IV. A Multistrategy Approach , vol.4 , pp. 3-61
    • Michalski, R.S.1
  • 21
    • 0042969825 scopus 로고
    • Machine vision and learning: Research issues and directions
    • George Mason University, Machine Learning and Inference Laboratory, Fairfax, VA
    • Michalski, R. S., Rosenfeld, A., & Aloimonos, Y. (1994). Machine vision and learning: research issues and directions. Technical Report No. MLI 94-6, George Mason University, Machine Learning and Inference Laboratory, Fairfax, VA.
    • (1994) Technical Report No. MLI 94-6
    • Michalski, R.S.1    Rosenfeld, A.2    Aloimonos, Y.3
  • 24
    • 0041968076 scopus 로고
    • Texture recognition through machine learning and concept optimization
    • George Mason University, Machine Learning and Inference Laboratory, Fairfax, VA
    • Pachowicz, P. W., & Bala, J. W. (1991). Texture recognition through machine learning and concept optimization. Technical Report No. MLI 91-4, George Mason University, Machine Learning and Inference Laboratory, Fairfax, VA.
    • (1991) Technical Report No. MLI 91-4
    • Pachowicz, P.W.1    Bala, J.W.2
  • 25
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1, 81-106.
    • (1986) Machine Learning , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 27
    • 0042468635 scopus 로고
    • GEST: A learning computer vision system that recognizes hand gestures
    • R. S. Michalski & G. Tecuci (Eds), San Francisco, CA: Kaufmann
    • Segen, J. (1994). GEST: a learning computer vision system that recognizes hand gestures. In R. S. Michalski & G. Tecuci (Eds), Machine learning: Vol. IV. A multistrategy approach (pp. 621-634). San Francisco, CA: Kaufmann.
    • (1994) Machine Learning: Vol. IV. A Multistrategy Approach , vol.4 , pp. 621-634
    • Segen, J.1
  • 28
    • 0020883650 scopus 로고
    • An appraisal of a decision tree approach to image classification
    • Shepherd, B. A. (1983). An appraisal of a decision tree approach to image classification. In Proceedings of IJCAI-83, pp. 473-475.
    • (1983) Proceedings of IJCAI-83 , pp. 473-475
    • Shepherd, B.A.1
  • 29
    • 0003539213 scopus 로고
    • The MONK'S problems: A performance comparison of different learning algorithms
    • Department of Computer Science, Carnegie-Mellon University, Pittsburgh, PA
    • Thrun, S. B. et al. (1991). The MONK'S problems: a performance comparison of different learning algorithms. Technical Report No. CMU-CS-91-197, Department of Computer Science, Carnegie-Mellon University, Pittsburgh, PA.
    • (1991) Technical Report No. CMU-CS-91-197
    • Thrun, S.B.1
  • 32
    • 0003978401 scopus 로고
    • Selective induction learning system AQ15c: The method and user's guide
    • George Mason University, Machine Learning and Inference Laboratory, Fairfax, VA
    • Wnek, J., Kaufman, K., Bloedorn, E., & Michalski, R. S. (1995). Selective induction learning system AQ15c: the method and user's guide. Technical Report No. MLI 95-4, George Mason University, Machine Learning and Inference Laboratory, Fairfax, VA.
    • (1995) Technical Report No. MLI 95-4
    • Wnek, J.1    Kaufman, K.2    Bloedorn, E.3    Michalski, R.S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.