-
1
-
-
0003130451
-
Resource-bounded measure and randomness
-
Complexity, Logic and Recursion Theory (A. Sorbi, ed.), Marcel Dekker, New York
-
K. Ambos-Spies and E. Mayordomo, Resource-bounded measure and randomness. In: Complexity, Logic and Recursion Theory (A. Sorbi, ed.), pp. l-47, Lecture Notes in Pure and Applied Mathematics (Marcel Dekker, New York 1997).
-
(1997)
Lecture Notes in Pure and Applied Mathematics
-
-
Ambos-Spies, K.1
Mayordomo, E.2
-
2
-
-
0034871624
-
Hausdorff dimension in exponential time
-
K. Ambos-Spies, W. Merkle, J. Reimann, and F. Stephan, Hausdorff dimension in exponential time. Proceedings of the 16th IEEE Conference on Computational Complexity, pp. 210-217 (2001).
-
(2001)
Proceedings of the 16th IEEE Conference on Computational Complexity
, pp. 210-217
-
-
Ambos-Spies, K.1
Merkle, W.2
Reimann, J.3
Stephan, F.4
-
3
-
-
35048836635
-
Effective strong dimension, algorithmic information, and computational complexity
-
Springer-Verlag, New York et al.
-
K. B. Athreya, J. M. Hitchcock, J. H. Lutz, and E. Mayordomo, Effective strong dimension, algorithmic information, and computational complexity. Proceedings of the 21st International Symposium on Theoretical Aspects of Computer Science, pp. 632-643 (Springer-Verlag, New York et al. 2004)
-
(2004)
Proceedings of the 21st International Symposium on Theoretical Aspects of Computer Science
, pp. 632-643
-
-
Athreya, K.B.1
Hitchcock, J.M.2
Lutz, J.H.3
Mayordomo, E.4
-
5
-
-
11944249588
-
Complete sets and structure in subrecursive classes
-
Lecture Notes in Logic
-
H. Buhrman and L. Torenvliet, Complete sets and structure in subrecursive classes. In: Proceedings of Logic Colloquium '96, Lecture Notes in Logic 12, 45-78 (1998).
-
(1998)
Proceedings of Logic Colloquium '96
, vol.12
, pp. 45-78
-
-
Buhrman, H.1
Torenvliet, L.2
-
6
-
-
0342468141
-
A generalization of resource-bounded measure, with application to the BPP vs. EXP Problem
-
H. Buhrman, D. van Melkebeek, K. W. Regan, D. Sivakumar, and M. Strauss, A generalization of resource-bounded measure, with application to the BPP vs. EXP Problem. SIAM J. Computing 30, 576-601 (2001).
-
(2001)
SIAM J. Computing
, vol.30
, pp. 576-601
-
-
Buhrman, H.1
Van Melkebeek, D.2
Regan, K.W.3
Sivakumar, D.4
Strauss, M.5
-
7
-
-
0028712369
-
On hausdorff and topological dimensions of the kolmogorov complexity of the real line
-
J. Cai and J. Hartmanis, On Hausdorff and topological dimensions of the Kolmogorov complexity of the real line. J. Computer and Systems Sciences 49, 605-619 (1994).
-
(1994)
J. Computer and Systems Sciences
, vol.49
, pp. 605-619
-
-
Cai, J.1
Hartmanis, J.2
-
8
-
-
0016532771
-
A theory of program size formally identical to information theory
-
G. J. Chaitin, A theory of program size formally identical to information theory. J. ACM 22, 329-340 (1975).
-
(1975)
J. ACM
, vol.22
, pp. 329-340
-
-
Chaitin, G.J.1
-
9
-
-
0000761947
-
Incompleteness theorems for random reals
-
G. J. Chaitin, Incompleteness theorems for random reals. Advances in Applied Mathematics 8, 119-146 (1987).
-
(1987)
Advances in Applied Mathematics
, vol.8
, pp. 119-146
-
-
Chaitin, G.J.1
-
10
-
-
0242440301
-
Finite-state dimension
-
J. J. Dai, J. I. Lathrop, J. H. Lutz, and E. Mayordomo, Finite-state dimension. Theoret. Comp. Sci. 310, 1-33 (2004).
-
(2004)
Theoret. Comp. Sci.
, vol.310
, pp. 1-33
-
-
Dai, J.J.1
Lathrop, J.I.2
Lutz, J.H.3
Mayordomo, E.4
-
12
-
-
0742269491
-
On the autoreducibility of random sequences
-
T. Ebert, W. Merkle, and H. Vollmer, On the autoreducibility of random sequences. SIAM J. Computing 32, 1542-1569 (2003).
-
(2003)
SIAM J. Computing
, vol.32
, pp. 1542-1569
-
-
Ebert, T.1
Merkle, W.2
Vollmer, H.3
-
15
-
-
0344360944
-
Gales and supergales are equivalent for defining constructive Hausdorff dimension
-
Computing Research Repository
-
S. A. Fenner, Gales and supergales are equivalent for defining constructive Hausdorff dimension. Technical Report cs.CC/0208044, Computing Research Repository 2002.
-
(2002)
Technical Report Cs.CC/0208044
-
-
Fenner, S.A.1
-
17
-
-
34250950477
-
Dimension und äusseres Maß
-
F. Hausdorff, Dimension und äusseres Maß. Math. Annalen 79, 157-179 (1919).
-
(1919)
Math. Annalen
, vol.79
, pp. 157-179
-
-
Hausdorff, F.1
-
21
-
-
0037163961
-
MAX3SAT is exponentially hard to approximate if NP has positive dimension
-
J. M. Hitchcock, MAX3SAT is exponentially hard to approximate if NP has positive dimension. Theoret. Comput. Sci. 289, 861-869 (2002).
-
(2002)
Theoret. Comput. Sci.
, vol.289
, pp. 861-869
-
-
Hitchcock, J.M.1
-
22
-
-
0037811185
-
Fractal dimension and logarithmic loss unpredictability
-
J. M. Hitchcock, Fractal dimension and logarithmic loss unpredictability. Theoret. Comp. Sci. 304, 431-441 (2003).
-
(2003)
Theoret. Comp. Sci.
, vol.304
, pp. 431-441
-
-
Hitchcock, J.M.1
-
23
-
-
0037447594
-
Gales suffice for constructive dimension
-
J. M. Hitchcock, Gales suffice for constructive dimension. Information Processing Letters 86, 9-12 (2003).
-
(2003)
Information Processing Letters
, vol.86
, pp. 9-12
-
-
Hitchcock, J.M.1
-
25
-
-
35248853282
-
Scaled dimension and nonuniform complexity
-
(to appear). A preliminary version appeared in: Proceedings of the 30th International Colloquium on Automata, Languages, and Programming
-
J. M. Hitchcock, J. H. Lutz, and E. Mayordomo, Scaled dimension and nonuniform complexity. J. Computer and System Sciences (to appear). A preliminary version appeared in: Proceedings of the 30th International Colloquium on Automata, Languages, and Programming, pp. 278-290 (2003).
-
(2003)
J. Computer and System Sciences
, pp. 278-290
-
-
Hitchcock, J.M.1
Lutz, J.H.2
Mayordomo, E.3
-
26
-
-
35248858826
-
The arithmetical complexity of dimension and randomness
-
SpringerVerlag, New York et al.
-
J. M. Hitchcock, J. H. Lutz, and S. A. Terwijn, The arithmetical complexity of dimension and randomness. Proceedings of the 12th Annual Conference of the European Association for Computer Science Logic, pp. 241-254 (SpringerVerlag, New York et al. 2003).
-
(2003)
Proceedings of the 12th Annual Conference of the European Association for Computer Science Logic
, pp. 241-254
-
-
Hitchcock, J.M.1
Lutz, J.H.2
Terwijn, S.A.3
-
27
-
-
0029287714
-
The complexity and distribution of hard problems
-
D. W. Jucdes and J. H. Lutz, The complexity and distribution of hard problems. SIAM J. Computing 24, 279-295 (1995).
-
(1995)
SIAM J. Computing
, vol.24
, pp. 279-295
-
-
Jucdes, D.W.1
Lutz, J.H.2
-
28
-
-
0000508181
-
On the notion of a random sequence
-
L. A. Levin, On the notion of a random sequence. Soviet Mathematics Doklady 14, 1413-1416 (1973).
-
(1973)
Soviet Mathematics Doklady
, vol.14
, pp. 1413-1416
-
-
Levin, L.A.1
-
29
-
-
0016078993
-
Laws of information conservation (nongrowth) and aspects of the foundation of probability theory
-
L. A. Levin, Laws of information conservation (nongrowth) and aspects of the foundation of probability theory. Problems of Information Transmission 10, 206-210 (1974).
-
(1974)
Problems of Information Transmission
, vol.10
, pp. 206-210
-
-
Levin, L.A.1
-
32
-
-
0026851355
-
Almost everywhere high nonuniform complexity
-
J. H. Lutz, Almost everywhere high nonuniform complexity. J. Computer and System Sciences 44, 220-258 (1992).
-
(1992)
J. Computer and System Sciences
, vol.44
, pp. 220-258
-
-
Lutz, J.H.1
-
33
-
-
0000923207
-
The quantitative structure of exponential time
-
(L. A. Hemaspaandra and A. L. Selman, eds.), Springer-Verlag, New York et al.
-
J. H. Lutz, The quantitative structure of exponential time. In: Complexity Theory Retrospective II (L. A. Hemaspaandra and A. L. Selman, eds.), pp. 225-254 (Springer-Verlag, New York et al. 1997).
-
(1997)
Complexity Theory Retrospective II
, pp. 225-254
-
-
Lutz, J.H.1
-
36
-
-
0345227319
-
Dimension in complexity classes
-
J. H. Lutz, Dimension in complexity classes. SIAM J. Computing 32, 1236-1259 (2003). A preliminary version appeared in: Proceedings of the Fifteenth Annual IEEE Conference on Computational Complexity, 158-169 (2000).
-
(2003)
SIAM J. Computing
, vol.32
, pp. 1236-1259
-
-
Lutz, J.H.1
-
38
-
-
0344118726
-
The dimensions of individual strings and sequences
-
J. H. Lutz, The dimensions of individual strings and sequences. Information and Computation 187, 49-79 (2003).
-
(2003)
Information and Computation
, vol.187
, pp. 49-79
-
-
Lutz, J.H.1
-
40
-
-
18344371384
-
The definition of random sequences
-
P. Martin-Löf, The definition of random sequences. Information and Control 9, 602-619 (1966).
-
(1966)
Information and Control
, vol.9
, pp. 602-619
-
-
Martin-Löf, P.1
-
43
-
-
0037120704
-
A kolmogorov complexity characterization of constructive hausdorff dimension
-
E. Mayordomo, A Kolmogorov complexity characterization of constructive Hausdorff dimension. Information Processing Letters 84, 1-3 (2002).
-
(2002)
Information Processing Letters
, vol.84
, pp. 1-3
-
-
Mayordomo, E.1
-
44
-
-
0004122682
-
-
Cambridge University Press, Cambridge
-
C. A. Rogers, Hausdorff Measures (Cambridge University Press, Cambridge 1998).
-
(1998)
Hausdorff Measures
-
-
Rogers, C.A.1
-
45
-
-
0004492226
-
Coding of combinatorial sources and hausdorff dimension
-
B. Ya. Ryabko, Coding of combinatorial sources and Hausdorff dimension. Soviet Mathematics Doklady 30, 219-222 (1984).
-
(1984)
Soviet Mathematics Doklady
, vol.30
, pp. 219-222
-
-
Ryabko, B.Ya.1
-
47
-
-
0004018518
-
Algorithmic approach to the prediction problem
-
B. Ya. Ryabko, Algorithmic approach to the prediction problem. Problems of Information Transmission 29, 186-193 (1993).
-
(1993)
Problems of Information Transmission
, vol.29
, pp. 186-193
-
-
Ryabko, B.Ya.1
-
48
-
-
0000797906
-
The complexity and effectiveness of prediction problems
-
B. Ya. Ryabko, The complexity and effectiveness of prediction problems. Journal of Complexity 10, 281-295 (1994).
-
(1994)
Journal of Complexity
, vol.10
, pp. 281-295
-
-
Ryabko, B.Ya.1
-
49
-
-
0000583779
-
A unified approach to the definition of random sequences
-
C. P. Schnorr, A unified approach to the definition of random sequences. Mathematical Systems Theory 5, 246-258 (1971).
-
(1971)
Mathematical Systems Theory
, vol.5
, pp. 246-258
-
-
Schnorr, C.P.1
-
51
-
-
0015902552
-
Process complexity and effective random tests
-
C. P. Schnorr, Process complexity and effective random tests. J. Computer and System Sciences 7, 376-388 (1973).
-
(1973)
J. Computer and System Sciences
, vol.7
, pp. 376-388
-
-
Schnorr, C.P.1
-
52
-
-
0345106453
-
A survey of the theory of random sequences
-
(R. E. Butts and J. Hintikka, eds.), D. Reidel, Dordrecht
-
C. P. Schnorr, A survey of the theory of random sequences. In: Basic Problems in Methodology and Linguistics (R. E. Butts and J. Hintikka, eds.), pp. 193-210 (D. Reidel, Dordrecht 1977).
-
(1977)
Basic Problems in Methodology and Linguistics
, pp. 193-210
-
-
Schnorr, C.P.1
-
53
-
-
84938487169
-
The synthesis of two-terminal switching circuits
-
C. E. Shannon, The synthesis of two-terminal switching circuits. Bell System Technical J. 28, 59-98 (1949).
-
(1949)
Bell System Technical J.
, vol.28
, pp. 59-98
-
-
Shannon, C.E.1
-
54
-
-
0344360940
-
The frequency approach to the definition of a random sequence
-
In Russian.
-
A. Kh. Shen', The frequency approach to the definition of a random sequence. Semiotika i Informatika 18, 14-42 (1982). (In Russian.)
-
(1982)
Semiotika I Informatika
, vol.18
, pp. 14-42
-
-
Shen, A.Kh.1
-
55
-
-
0002394549
-
On relations between different algorithmic definitions of randomness
-
A. Kh. Shen', On relations between different algorithmic definitions of randomness. Soviet Mathematics Doklady 38, 316-319 (1989).
-
(1989)
Soviet Mathematics Doklady
, vol.38
, pp. 316-319
-
-
Shen, A.Kh.1
-
56
-
-
11944250673
-
-
R. M. Solovay 1975. Reported in [9].
-
R. M. Solovay 1975. Reported in [9].
-
-
-
-
57
-
-
38249002230
-
Kolmogorov complexity and hausdorff dimension
-
L. Staiger, Kolmogorov Complexity and Hausdorff Dimension. Information and Computation 103, 159-194 (1993).
-
(1993)
Information and Computation
, vol.103
, pp. 159-194
-
-
Staiger, L.1
-
58
-
-
0038856793
-
A tight upper bound on Kolmogorov complexity and uniformly optimal prediction
-
L. Staiger, A tight upper bound on Kolmogorov complexity and uniformly optimal prediction. Theory of Computing Systems 31, 215-229 (1998).
-
(1998)
Theory of Computing Systems
, vol.31
, pp. 215-229
-
-
Staiger, L.1
-
59
-
-
0003944635
-
How much can you win when your adversary is handicapped
-
Kluwer Academic Press
-
L. Staiger, How much can you win when your adversary is handicapped. In: Numbers, Information and Complexity, pp. 403-412 (Kluwer Academic Press, 2000).
-
(2000)
Numbers, Information and Complexity
, pp. 403-412
-
-
Staiger, L.1
-
60
-
-
0842335187
-
Constructive dimension equals Kolmogorov complexity
-
University of Auckland, January
-
L. Staiger, Constructive dimension equals Kolmogorov complexity. Technical Report CDMTCS-210, University of Auckland, January 2003.
-
(2003)
Technical Report
, vol.CDMTCS-210
-
-
Staiger, L.1
-
61
-
-
0000144097
-
Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups
-
D. Sullivan, Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups. Acta Mathematica 153, 259-277 (1984).
-
(1984)
Acta Mathematica
, vol.153
, pp. 259-277
-
-
Sullivan, D.1
-
62
-
-
10444239935
-
A generalization of Chaitin's halting probability Ω and halting self-similar sets
-
K. Tadaki, A generalization of Chaitin's halting probability Ω and halting self-similar sets. Hokkaido Mathematical Journal 31, 219-253 (2002).
-
(2002)
Hokkaido Mathematical Journal
, vol.31
, pp. 219-253
-
-
Tadaki, K.1
-
63
-
-
11944262892
-
Complexity and randomness
-
University of Auckland, March
-
S. A. Terwijn, Complexity and randomness. Technical Report CDMTCS-212, University of Auckland, March 2003.
-
(2003)
Technical Report
, vol.CDMTCS-212
-
-
Terwijn, S.A.1
-
66
-
-
77951203397
-
The complexity of finite objects and the development of the concepts of information and randomness by means of the theory of algorithms
-
A. K. Zvonkin and L. A. Levin, The complexity of finite objects and the development of the concepts of information and randomness by means of the theory of algorithms. Russian Mathematical Surveys 25, 83-124 (1970).
-
(1970)
Russian Mathematical Surveys
, vol.25
, pp. 83-124
-
-
Zvonkin, A.K.1
Levin, L.A.2
|