-
1
-
-
0034871624
-
Hausdorff dimension in exponential time
-
K. Ambos-Spies, W. Merkle, J. Reimann, and F. Stephan. Hausdorff dimension in exponential time. In Proceedings of the 16th IEEE Conference on Computational Complexity, pages 210-217, 2001.
-
(2001)
Proceedings of the 16th IEEE Conference on Computational Complexity
, pp. 210-217
-
-
Ambos-Spies, K.1
Merkle, W.2
Reimann, J.3
Stephan, F.4
-
2
-
-
35248890847
-
-
Technical Report cs.CC/0211025, Computing Research Repository
-
K. B. Athreya, J. M. Hitchcock, J. H. Lutz, and E. Mayordomo. Effective strong dimension, algorithmic information, and computational complexity. Technical Report cs.CC/0211025, Computing Research Repository, 2002.
-
(2002)
Effective Strong Dimension, Algorithmic Information, and Computational Complexity
-
-
Athreya, K.B.1
Hitchcock, J.M.2
Lutz, J.H.3
Mayordomo, E.4
-
3
-
-
0002672692
-
The fractional dimension of a set defined by decimal properties
-
Oxford Series
-
H.G. Eggleston. The fractional dimension of a set defined by decimal properties. Quarterly Journal of Mathematics, Oxford Series 20:31-36, 1949.
-
(1949)
Quarterly Journal of Mathematics
, vol.20
, pp. 31-36
-
-
Eggleston, H.G.1
-
6
-
-
34250950477
-
Dimension und äusseres Mass
-
F. Hausdorff. Dimension und äusseres Mass. Mathematische Annalen, 79:157-179, 1919.
-
(1919)
Mathematische Annalen
, vol.79
, pp. 157-179
-
-
Hausdorff, F.1
-
7
-
-
0037811185
-
Fractal dimension and logarithmic loss unpredictability
-
To appear
-
J. M. Hitchcock. Fractal dimension and logarithmic loss unpredictability. Theoretical Computer Science. To appear.
-
Theoretical Computer Science
-
-
Hitchcock, J.M.1
-
8
-
-
0037163961
-
MAX3SAT is exponentially hard to approximate if NP has positive dimension
-
J. M. Hitchcock. MAX3SAT is exponentially hard to approximate if NP has positive dimension. Theoretical Computer Science, 289(1):861-869, 2002.
-
(2002)
Theoretical Computer Science
, vol.289
, Issue.1
, pp. 861-869
-
-
Hitchcock, J.M.1
-
9
-
-
0041127568
-
Completeness and weak completeness under polynomial-size circuits
-
D. W. Juedes and J. H. Lutz. Completeness and weak completeness under polynomial-size circuits. Information and Computation, 125:13-31, 1996.
-
(1996)
Information and Computation
, vol.125
, pp. 13-31
-
-
Juedes, D.W.1
Lutz, J.H.2
-
11
-
-
35248883240
-
Dimension in complexity classes
-
To appear. Available as Technical Report cs.CC/0203016, Computing Research Repository
-
J. H. Lutz. Dimension in complexity classes. SIAM Journal on Computing. To appear. Available as Technical Report cs.CC/0203016, Computing Research Repository, 2002.
-
(2002)
SIAM Journal on Computing
-
-
Lutz, J.H.1
-
12
-
-
0003868580
-
The dimensions of individual strings and sequences
-
To appear. Available as Technical Report cs.CC/0203017, Computing Research Repository
-
J. H. Lutz. The dimensions of individual strings and sequences. Information and Computation. To appear. Available as Technical Report cs.CC/0203017, Computing Research Repository, 2002.
-
(2002)
Information and Computation
-
-
Lutz, J.H.1
-
13
-
-
0026851355
-
Almost everywhere high nonuniform complexity
-
J. H. Lutz. Almost everywhere high nonuniform complexity. Journal of Computer and System Sciences, 44:220-258, 1992.
-
(1992)
Journal of Computer and System Sciences
, vol.44
, pp. 220-258
-
-
Lutz, J.H.1
-
15
-
-
0004122682
-
-
Cambridge University Press, Originally published in 1970
-
C. A. Rogers. Hausdorff Measures. Cambridge University Press, 1998. Originally published in 1970.
-
(1998)
Hausdorff Measures
-
-
Rogers, C.A.1
-
16
-
-
0002894287
-
Klassifikation der Zufallsgesetze nach Komplexität und Ordnung
-
C. P. Schnorr. Klassifikation der Zufallsgesetze nach Komplexität und Ordnung. Z. Wahrscheinlichkeitstheorie verw. Geb., 16:1-21, 1970.
-
(1970)
Z. Wahrscheinlichkeitstheorie Verw. Geb.
, vol.16
, pp. 1-21
-
-
Schnorr, C.P.1
-
17
-
-
0000583779
-
A unified approach to the definition of random sequences
-
C. P. Schnorr. A unified approach to the definition of random sequences. Mathematical Systems Theory, 5:246-258, 1971.
-
(1971)
Mathematical Systems Theory
, vol.5
, pp. 246-258
-
-
Schnorr, C.P.1
|