-
1
-
-
0034871624
-
Hausdorff dimension in exponential time
-
K. Ambos-Spies, W. Merkle, J. Reimann, and F. Stephan. Hausdorff dimension in exponential time. In Proceedings of the 16th IEEE Conference on Computational Complexity, pages 210-217, 2001.
-
(2001)
Proceedings of the 16th IEEE Conference on Computational Complexity
, pp. 210-217
-
-
Ambos-Spies, K.1
Merkle, W.2
Reimann, J.3
Stephan, F.4
-
2
-
-
35248890847
-
-
Technical Heport cs.CC/0211025, Computing Research Repository
-
K. B. Athreya, J. M. Hitchcock, J. H. Lutz, and E. Mayordomo. Effective strong dimension, algorithmic information, and computational complexity. Technical Heport cs.CC/0211025, Computing Research Repository, 2002.
-
(2002)
Effective Strong Dimension, Algorithmic Information, and Computational Complexity
-
-
Athreya, K.B.1
Hitchcock, J.M.2
Lutz, J.H.3
Mayordomo, E.4
-
6
-
-
34250950477
-
Dimension und äusseres Mass
-
F. Hausdorff. Dimension und äusseres Mass. Mathematische Annalen, 79:157-179, 1919.
-
(1919)
Mathematische Annalen
, vol.79
, pp. 157-179
-
-
Hausdorff, F.1
-
7
-
-
84889117795
-
Fractal dimension and logarithmic loss unpredictability
-
To appear
-
J. M. Hitchcock. Fractal dimension and logarithmic loss unpredictability. Theoretical Computer Science. To appear.
-
Theoretical Computer Science
-
-
Hitchcock, J.M.1
-
8
-
-
0037163961
-
MAX3SAT is exponentially hard to approximate if NP has positive dimension
-
J. M. Hitchcock. MAX3SAT is exponentially hard to approximate if NP has positive dimension. Theoretical Computer Science, 289(1):861-869, 2002.
-
(2002)
Theoretical Computer Science
, vol.289
, Issue.1
, pp. 861-869
-
-
Hitchcock, J.M.1
-
9
-
-
0037447594
-
Gales suffice for constructive dimension
-
J. M. Hitchcock. Gales suffice for constructive dimension. Information Processing Letters, 86(1):9-12, 2003.
-
(2003)
Information Processing Letters
, vol.86
, Issue.1
, pp. 9-12
-
-
Hitchcock, J.M.1
-
10
-
-
0000149604
-
Degrees of generic sets
-
Recursion Theory: its Generalizations and Applications, Cambridge University Press
-
C. G. Jockusch. Degrees of generic sets. In Recursion Theory: its Generalizations and Applications, volume 45 of London Mathematical Society Lecture Notes Series, pages 110-139. Cambridge University Press, 1980.
-
(1980)
London Mathematical Society Lecture Notes Series
, vol.45
, pp. 110-139
-
-
Jockusch, C.G.1
-
11
-
-
33645929602
-
Normal numbers and subsets of N with given densities
-
H. Ki and T. Linton. Normal numbers and subsets of N with given densities. Fundamenta Mathematicae, 144:163-179, 1994.
-
(1994)
Fundamenta Mathematicae
, vol.144
, pp. 163-179
-
-
Ki, H.1
Linton, T.2
-
12
-
-
0010721870
-
Note on arithmetical models for consistent formulae of the predicate calculus
-
G. Kreisel. Note on arithmetical models for consistent formulae of the predicate calculus. Fundamenta Mathematicae, 37:265-285, 1950.
-
(1950)
Fundamenta Mathematicae
, vol.37
, pp. 265-285
-
-
Kreisel, G.1
-
15
-
-
84889114798
-
The dimensions of individual strings and sequences
-
To appear
-
J. H. Lutz. The dimensions of individual strings and sequences. Information and Computation. To appear.
-
Information and Computation
-
-
Lutz, J.H.1
-
16
-
-
18344371384
-
The definition of random sequences
-
P. Martin-Löf. The definition of random sequences. Information and Control, 9:602-619, 1966.
-
(1966)
Information and Control
, vol.9
, pp. 602-619
-
-
Martin-Löf, P.1
-
17
-
-
0037120704
-
A Kolmogorov complexity characterization of constructive Hausdorff dimension
-
E. Mayordomo. A Kolmogorov complexity characterization of constructive Hausdorff dimension. Information Processing Letters, 84(1):1-3, 2002.
-
(2002)
Information Processing Letters
, vol.84
, Issue.1
, pp. 1-3
-
-
Mayordomo, E.1
-
22
-
-
0013373424
-
On the power of reading the whole infinite input tape
-
C. S. Calude and Gh. Paun, editors, Springer-Verlag
-
L. Staiger. On the power of reading the whole infinite input tape. In C. S. Calude and Gh. Paun, editors, Finite Versus Infinite: Contributions to an Eternal Dilemma, pages 335-348. Springer-Verlag, 2000.
-
(2000)
Finite Versus Infinite: Contributions to An Eternal Dilemma
, pp. 335-348
-
-
Staiger, L.1
-
24
-
-
11944262892
-
-
Technical Report CDMTCS-212, University of Auckland, March Notes for a course given at the University of Auckland
-
S. A. Terwjjn. Complexity and randomness. Technical Report CDMTCS-212, University of Auckland, March 2003. Notes for a course given at the University of Auckland.
-
(2003)
Complexity and Randomness
-
-
Terwjjn, S.A.1
-
25
-
-
0011565585
-
-
PhD thesis, Department of Mathematics, University of Amsterdam
-
M. van Lambalgen. Random Sequences. PhD thesis, Department of Mathematics, University of Amsterdam, 1987.
-
(1987)
Random Sequences
-
-
Van Lambalgen, M.1
-
27
-
-
0004206289
-
-
PhD thesis, Department of Mathematics, University of Heidelberg
-
Y. Wang. Randomness and Complexity. PhD thesis, Department of Mathematics, University of Heidelberg, 1996.
-
(1996)
Randomness and Complexity
-
-
Wang, Y.1
|