-
1
-
-
0034871624
-
Hausdorff dimension in exponential time
-
K. Ambos-Spies, W. Merklc, J. Reimann, and F. Stephan. Hausdorff dimension in exponential time. In Proceedings of the 16th IEEE Conference on Computational Complexity, pages 210-217, 2001.
-
(2001)
Proceedings of the 16th IEEE Conference on Computational Complexity
, pp. 210-217
-
-
Ambos-Spies, K.1
Merklc, W.2
Reimann, J.3
Stephan, F.4
-
2
-
-
0028712369
-
On Hausdorff and topological dimensions of the Kolmogorov complexity of the real line
-
J. Cai and J. Hartmanis. On Hausdorff and topological dimensions of the Kolmogorov complexity of the real line. Journal of Computer and Systems Sciences, 49:605-619, 1994.
-
(1994)
Journal of Computer and Systems Sciences
, vol.49
, pp. 605-619
-
-
Cai, J.1
Hartmanis, J.2
-
3
-
-
0242440301
-
Finite-state dimension
-
J. J. Dai, J. I. Lathrop, J. H. Lutz, and E. Mayordomo. Finite-state dimension. Theoretical Computer Science, 310(1-3):1-33, 2004.
-
(2004)
Theoretical Computer Science
, vol.310
, Issue.1-3
, pp. 1-33
-
-
Dai, J.J.1
Lathrop, J.I.2
Lutz, J.H.3
Mayordomo, E.4
-
6
-
-
0344360944
-
Gales and supergales are equivalent for defining constructive Hausdorff dimension
-
Computing Research Repository
-
S.A. Fenner. Gales and supergales are equivalent for defining constructive Hausdorff dimension. Technical Report cs.CC/0208044, Computing Research Repository, 2002.
-
(2002)
Technical Report Cs.CC/0208044
-
-
Fenner, S.A.1
-
8
-
-
34250950477
-
Dimension und äußeres Maß
-
F. Hausdorff. Dimension und äußeres Maß. Mathematische Annalen, 79:157-179, 1919.
-
(1919)
Mathematische Annalen
, vol.79
, pp. 157-179
-
-
Hausdorff, F.1
-
9
-
-
23844521264
-
Correspondence principles for effective dimensions
-
To appear
-
J. M. Hitchcock. Correspondence principles for effective dimensions. Theory of Computing Systems. To appear.
-
Theory of Computing Systems
-
-
Hitchcock, J.M.1
-
10
-
-
0037163961
-
MAX3SAT is exponentially hard to approximate if NP has positive dimension
-
J. M. Hitchcock. MAX3SAT is exponentially hard to approximate if NP has positive dimension. Theoretical Computer Science, 289(1):861-869, 2002.
-
(2002)
Theoretical Computer Science
, vol.289
, Issue.1
, pp. 861-869
-
-
Hitchcock, J.M.1
-
11
-
-
0037811185
-
Fractal dimension and logarithmic loss unpredictability
-
J. M. Hitchcock. Fractal dimension and logarithmic loss unpredictability. Theoretical Computer Science, 304(1-3):431-441, 2003.
-
(2003)
Theoretical Computer Science
, vol.304
, Issue.1-3
, pp. 431-441
-
-
Hitchcock, J.M.1
-
12
-
-
0037447594
-
Gales suffice for constructive dimension
-
J. M. Hitchcock. Gales suffice for constructive dimension. Information Processing Letters, 86(1):9-12, 2003.
-
(2003)
Information Processing Letters
, vol.86
, Issue.1
, pp. 9-12
-
-
Hitchcock, J.M.1
-
15
-
-
0026851355
-
Almost everywhere high nonuniform complexity
-
J. H. Lutz. Almost everywhere high nonuniform complexity. Journal of Computer and System Sciences, 44(2):220-258, 1992.
-
(1992)
Journal of Computer and System Sciences
, vol.44
, Issue.2
, pp. 220-258
-
-
Lutz, J.H.1
-
17
-
-
0345227319
-
Dimension in complexity classes
-
J. H. Lutz. Dimension in complexity classes. SIAM Journal on Computing, 32(5):1236-1250, 2003.
-
(2003)
SIAM Journal on Computing
, vol.32
, Issue.5
, pp. 1236-1250
-
-
Lutz, J.H.1
-
18
-
-
0344118726
-
The dimensions of individual strings and sequences
-
J. H. Lutz. The dimensions of individual strings and sequences. Information and Computation, 187(1):49-79, 2003.
-
(2003)
Information and Computation
, vol.187
, Issue.1
, pp. 49-79
-
-
Lutz, J.H.1
-
21
-
-
0037120704
-
A Kolmogorov complexity characterization of constructive Hausdorff dimension
-
E. Mayordomo. A Kolmogorov complexity characterization of constructive Hausdorff dimension. Information Processing Letters, 84(1):1-3, 2002.
-
(2002)
Information Processing Letters
, vol.84
, Issue.1
, pp. 1-3
-
-
Mayordomo, E.1
-
22
-
-
0004492226
-
Coding of combinatorial sources and Hausdorff dimension
-
B. Ya. Ryabko. Coding of combinatorial sources and Hausdorff dimension. Soviet Mathematics Doklady, 30:219-222, 1984.
-
(1984)
Soviet Mathematics Doklady
, vol.30
, pp. 219-222
-
-
Ya Ryabko, B.1
-
24
-
-
0004018518
-
Algorithmic approach to the prediction problem
-
B. Ya. Ryabko. Algorithmic approach to the prediction problem. Problems of Information Transmission, 29:186-193, 1993.
-
(1993)
Problems of Information Transmission
, vol.29
, pp. 186-193
-
-
Ya Ryabko, B.1
-
25
-
-
0000797906
-
The complexity and effectiveness of prediction problems
-
B. Ya. Ryabko. The complexity and effectiveness of prediction problems. Journal of Complexity, 10:281-295, 1994.
-
(1994)
Journal of Complexity
, vol.10
, pp. 281-295
-
-
Ya Ryabko, B.1
-
26
-
-
0000583779
-
A unified approach to the definition of random sequences
-
C. P. Schnorr. A unified approach to the definition of random sequences. Mathematical Systems Theory, 5:246-258, 1971.
-
(1971)
Mathematical Systems Theory
, vol.5
, pp. 246-258
-
-
Schnorr, C.P.1
-
29
-
-
84856043672
-
A mathematical theory of communication
-
C. E. Shannon. A mathematical theory of communication. Bell System Technical Journal, 27:379-423, 623-656, 1948.
-
(1948)
Bell System Technical Journal
, vol.27
, pp. 379-423
-
-
Shannon, C.E.1
-
30
-
-
38249002230
-
Kolmogorov complexity and Hausdorff dimension
-
L. Staiger. Kolmogorov complexity and Hausdorff dimension. Information and Computation, 103:159-94, 1993.
-
(1993)
Information and Computation
, vol.103
, pp. 159-194
-
-
Staiger, L.1
-
31
-
-
0038856793
-
A tight upper bound on Kolmogorov complexity and uniformly optimal prediction
-
L. Staiger. A tight upper bound on Kolmogorov complexity and uniformly optimal prediction. Theory of Computing Systems, 31:215-29, 1998.
-
(1998)
Theory of Computing Systems
, vol.31
, pp. 215-229
-
-
Staiger, L.1
-
32
-
-
0003944635
-
How much can you win when your adversary is handicapped?
-
Kluwer
-
L. Staiger. How much can you win when your adversary is handicapped? In Numbers, Information and Complexity, pages 403-412. Kluwer, 2000.
-
(2000)
Numbers, Information and Complexity
, pp. 403-412
-
-
Staiger, L.1
-
33
-
-
0000144097
-
Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups
-
D. Sullivan. Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups. Acta Mathematica, 153:259-277, 1984.
-
(1984)
Acta Mathematica
, vol.153
, pp. 259-277
-
-
Sullivan, D.1
-
34
-
-
10444239935
-
A generalization of Chaitin's halting probability u and halting selfsimilar sets
-
K. Tadaki. A generalization of Chaitin's halting probability u and halting selfsimilar sets. Hokkaido Mathematical Journal, 31:219-253, 2002.
-
(2002)
Hokkaido Mathematical Journal
, vol.31
, pp. 219-253
-
-
Tadaki, K.1
-
37
-
-
0017996424
-
Coding theorems for individual sequences
-
J. Ziv. Coding theorems for individual sequences. IEEE Transactions on Information Theory, 24:405-412, 1978.
-
(1978)
IEEE Transactions on Information Theory
, vol.24
, pp. 405-412
-
-
Ziv, J.1
|