메뉴 건너뛰기




Volumn 2996, Issue , 2004, Pages 632-643

Effective Strong Dimension in Algorithmic Information and Computational Complexity

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; CHARACTERIZATION; DATA COMPRESSION; DYNAMICAL SYSTEMS; FRACTALS; PARALLEL PROCESSING SYSTEMS; POLYNOMIAL APPROXIMATION; POLYNOMIALS;

EID: 35048836635     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-540-24749-4_55     Document Type: Article
Times cited : (33)

References (37)
  • 2
    • 0028712369 scopus 로고
    • On Hausdorff and topological dimensions of the Kolmogorov complexity of the real line
    • J. Cai and J. Hartmanis. On Hausdorff and topological dimensions of the Kolmogorov complexity of the real line. Journal of Computer and Systems Sciences, 49:605-619, 1994.
    • (1994) Journal of Computer and Systems Sciences , vol.49 , pp. 605-619
    • Cai, J.1    Hartmanis, J.2
  • 6
    • 0344360944 scopus 로고    scopus 로고
    • Gales and supergales are equivalent for defining constructive Hausdorff dimension
    • Computing Research Repository
    • S.A. Fenner. Gales and supergales are equivalent for defining constructive Hausdorff dimension. Technical Report cs.CC/0208044, Computing Research Repository, 2002.
    • (2002) Technical Report Cs.CC/0208044
    • Fenner, S.A.1
  • 8
    • 34250950477 scopus 로고
    • Dimension und äußeres Maß
    • F. Hausdorff. Dimension und äußeres Maß. Mathematische Annalen, 79:157-179, 1919.
    • (1919) Mathematische Annalen , vol.79 , pp. 157-179
    • Hausdorff, F.1
  • 9
    • 23844521264 scopus 로고    scopus 로고
    • Correspondence principles for effective dimensions
    • To appear
    • J. M. Hitchcock. Correspondence principles for effective dimensions. Theory of Computing Systems. To appear.
    • Theory of Computing Systems
    • Hitchcock, J.M.1
  • 10
    • 0037163961 scopus 로고    scopus 로고
    • MAX3SAT is exponentially hard to approximate if NP has positive dimension
    • J. M. Hitchcock. MAX3SAT is exponentially hard to approximate if NP has positive dimension. Theoretical Computer Science, 289(1):861-869, 2002.
    • (2002) Theoretical Computer Science , vol.289 , Issue.1 , pp. 861-869
    • Hitchcock, J.M.1
  • 11
    • 0037811185 scopus 로고    scopus 로고
    • Fractal dimension and logarithmic loss unpredictability
    • J. M. Hitchcock. Fractal dimension and logarithmic loss unpredictability. Theoretical Computer Science, 304(1-3):431-441, 2003.
    • (2003) Theoretical Computer Science , vol.304 , Issue.1-3 , pp. 431-441
    • Hitchcock, J.M.1
  • 12
    • 0037447594 scopus 로고    scopus 로고
    • Gales suffice for constructive dimension
    • J. M. Hitchcock. Gales suffice for constructive dimension. Information Processing Letters, 86(1):9-12, 2003.
    • (2003) Information Processing Letters , vol.86 , Issue.1 , pp. 9-12
    • Hitchcock, J.M.1
  • 15
    • 0026851355 scopus 로고
    • Almost everywhere high nonuniform complexity
    • J. H. Lutz. Almost everywhere high nonuniform complexity. Journal of Computer and System Sciences, 44(2):220-258, 1992.
    • (1992) Journal of Computer and System Sciences , vol.44 , Issue.2 , pp. 220-258
    • Lutz, J.H.1
  • 17
    • 0345227319 scopus 로고    scopus 로고
    • Dimension in complexity classes
    • J. H. Lutz. Dimension in complexity classes. SIAM Journal on Computing, 32(5):1236-1250, 2003.
    • (2003) SIAM Journal on Computing , vol.32 , Issue.5 , pp. 1236-1250
    • Lutz, J.H.1
  • 18
    • 0344118726 scopus 로고    scopus 로고
    • The dimensions of individual strings and sequences
    • J. H. Lutz. The dimensions of individual strings and sequences. Information and Computation, 187(1):49-79, 2003.
    • (2003) Information and Computation , vol.187 , Issue.1 , pp. 49-79
    • Lutz, J.H.1
  • 21
    • 0037120704 scopus 로고    scopus 로고
    • A Kolmogorov complexity characterization of constructive Hausdorff dimension
    • E. Mayordomo. A Kolmogorov complexity characterization of constructive Hausdorff dimension. Information Processing Letters, 84(1):1-3, 2002.
    • (2002) Information Processing Letters , vol.84 , Issue.1 , pp. 1-3
    • Mayordomo, E.1
  • 22
    • 0004492226 scopus 로고
    • Coding of combinatorial sources and Hausdorff dimension
    • B. Ya. Ryabko. Coding of combinatorial sources and Hausdorff dimension. Soviet Mathematics Doklady, 30:219-222, 1984.
    • (1984) Soviet Mathematics Doklady , vol.30 , pp. 219-222
    • Ya Ryabko, B.1
  • 24
    • 0004018518 scopus 로고
    • Algorithmic approach to the prediction problem
    • B. Ya. Ryabko. Algorithmic approach to the prediction problem. Problems of Information Transmission, 29:186-193, 1993.
    • (1993) Problems of Information Transmission , vol.29 , pp. 186-193
    • Ya Ryabko, B.1
  • 25
    • 0000797906 scopus 로고
    • The complexity and effectiveness of prediction problems
    • B. Ya. Ryabko. The complexity and effectiveness of prediction problems. Journal of Complexity, 10:281-295, 1994.
    • (1994) Journal of Complexity , vol.10 , pp. 281-295
    • Ya Ryabko, B.1
  • 26
    • 0000583779 scopus 로고
    • A unified approach to the definition of random sequences
    • C. P. Schnorr. A unified approach to the definition of random sequences. Mathematical Systems Theory, 5:246-258, 1971.
    • (1971) Mathematical Systems Theory , vol.5 , pp. 246-258
    • Schnorr, C.P.1
  • 29
    • 84856043672 scopus 로고
    • A mathematical theory of communication
    • C. E. Shannon. A mathematical theory of communication. Bell System Technical Journal, 27:379-423, 623-656, 1948.
    • (1948) Bell System Technical Journal , vol.27 , pp. 379-423
    • Shannon, C.E.1
  • 30
    • 38249002230 scopus 로고
    • Kolmogorov complexity and Hausdorff dimension
    • L. Staiger. Kolmogorov complexity and Hausdorff dimension. Information and Computation, 103:159-94, 1993.
    • (1993) Information and Computation , vol.103 , pp. 159-194
    • Staiger, L.1
  • 31
    • 0038856793 scopus 로고    scopus 로고
    • A tight upper bound on Kolmogorov complexity and uniformly optimal prediction
    • L. Staiger. A tight upper bound on Kolmogorov complexity and uniformly optimal prediction. Theory of Computing Systems, 31:215-29, 1998.
    • (1998) Theory of Computing Systems , vol.31 , pp. 215-229
    • Staiger, L.1
  • 32
    • 0003944635 scopus 로고    scopus 로고
    • How much can you win when your adversary is handicapped?
    • Kluwer
    • L. Staiger. How much can you win when your adversary is handicapped? In Numbers, Information and Complexity, pages 403-412. Kluwer, 2000.
    • (2000) Numbers, Information and Complexity , pp. 403-412
    • Staiger, L.1
  • 33
    • 0000144097 scopus 로고
    • Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups
    • D. Sullivan. Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups. Acta Mathematica, 153:259-277, 1984.
    • (1984) Acta Mathematica , vol.153 , pp. 259-277
    • Sullivan, D.1
  • 34
    • 10444239935 scopus 로고    scopus 로고
    • A generalization of Chaitin's halting probability u and halting selfsimilar sets
    • K. Tadaki. A generalization of Chaitin's halting probability u and halting selfsimilar sets. Hokkaido Mathematical Journal, 31:219-253, 2002.
    • (2002) Hokkaido Mathematical Journal , vol.31 , pp. 219-253
    • Tadaki, K.1
  • 37
    • 0017996424 scopus 로고
    • Coding theorems for individual sequences
    • J. Ziv. Coding theorems for individual sequences. IEEE Transactions on Information Theory, 24:405-412, 1978.
    • (1978) IEEE Transactions on Information Theory , vol.24 , pp. 405-412
    • Ziv, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.