-
5
-
-
0031211602
-
-
M. Wassermeier, A. Yamada, H. Yang, O. Brandt, J. Behrend, and K. H. Ploog, Surf. Sci. 385, 178 (1997).
-
(1997)
Surf. Sci.
, vol.385
, pp. 178
-
-
Wassermeier, M.1
Yamada, A.2
Yang, H.3
Brandt, O.4
Behrend, J.5
Ploog, K.H.6
-
6
-
-
4244083530
-
-
A. R. Smith, R. M. Feenstra, D. W. Greve, J. Neugebauer, and J. E. Northrup, Phys. Rev. Lett. 79, 3934 (1997).
-
(1997)
Phys. Rev. Lett.
, vol.79
, pp. 3934
-
-
Smith, A.R.1
Feenstra, R.M.2
Greve, D.W.3
Neugebauer, J.4
Northrup, J.E.5
-
7
-
-
11644269084
-
-
to be published
-
A. R. Smith, R. M. Feenstra, D. W. Greve, J. Neugebauer, and J. Northrup, Appl. Phys. A (to be published).
-
Appl. Phys. A
-
-
Smith, A.R.1
Feenstra, R.M.2
Greve, D.W.3
Neugebauer, J.4
Northrup, J.5
-
8
-
-
11644281426
-
-
to be published
-
A. R. Smith, V. Ramachandran, R. M. Feenstra, D. W. Greve, M.-S. Shin, M. Skowronski, J. Neugebauer, and J. E. Northrup, J. Vac Sci. Technol. A (to be published).
-
J. Vac Sci. Technol. A
-
-
Smith, A.R.1
Ramachandran, V.2
Feenstra, R.M.3
Greve, D.W.4
Shin, M.-S.5
Skowronski, M.6
Neugebauer, J.7
Northrup, J.E.8
-
9
-
-
79954506955
-
-
submitted
-
A. R. Smith, R. M. Feenstra, D. W. Greve, M.-S. Shin, M. Skowronski, J. Neugebauer, and J. E. Northrup, Appl. Phys. Lett. (submitted).
-
Appl. Phys. Lett.
-
-
Smith, A.R.1
Feenstra, R.M.2
Greve, D.W.3
Shin, M.-S.4
Skowronski, M.5
Neugebauer, J.6
Northrup, J.E.7
-
10
-
-
0000424023
-
-
P. Hacke, G. Feuillet, H. Okumura, and S. Yoshida, Appl. Phys. Lett. 69, 2507 (1996).
-
(1996)
Appl. Phys. Lett.
, vol.69
, pp. 2507
-
-
Hacke, P.1
Feuillet, G.2
Okumura, H.3
Yoshida, S.4
-
11
-
-
0001534059
-
-
Z. Yu, S. L. Buczkowski, N. C. Giles, T. H. Myers, and M. R. Richards-Babb, Appl. Phys. Lett. 69, 2731 (1996).
-
(1996)
Appl. Phys. Lett.
, vol.69
, pp. 2731
-
-
Yu, Z.1
Buczkowski, S.L.2
Giles, N.C.3
Myers, T.H.4
Richards-Babb, M.R.5
-
13
-
-
0001528599
-
-
E. J. Tarsa, B. Heying, X. H. Wu, P. Fini, S. P. DenBaars, and J. S. Speck, J. Appl. Phys. 82, 5472 (1997).
-
(1997)
J. Appl. Phys.
, vol.82
, pp. 5472
-
-
Tarsa, E.J.1
Heying, B.2
Wu, X.H.3
Fini, P.4
DenBaars, S.P.5
Speck, J.S.6
-
14
-
-
3342892392
-
-
L. J. Whitman, P. M. Thibado, S. C. Erwin, B. R. Bennett, and B. V. Shanabrook, Phys. Rev. Lett. 79, 693 (1997).
-
(1997)
Phys. Rev. Lett.
, vol.79
, pp. 693
-
-
Whitman, L.J.1
Thibado, P.M.2
Erwin, S.C.3
Bennett, B.R.4
Shanabrook, B.V.5
-
15
-
-
0000073627
-
-
W. Harrison, J. Vac. Sci. Technol. 16, 1492 (1979); M. D. Pashley, Phys. Rev. B 40, 10 481 (1989); J. E. Northrup and S. Froyen, ibid. 50, 2015 (1994).
-
(1979)
J. Vac. Sci. Technol.
, vol.16
, pp. 1492
-
-
Harrison, W.1
-
16
-
-
35949013015
-
-
W. Harrison, J. Vac. Sci. Technol. 16, 1492 (1979); M. D. Pashley, Phys. Rev. B 40, 10 481 (1989); J. E. Northrup and S. Froyen, ibid. 50, 2015 (1994).
-
(1989)
Phys. Rev. B
, vol.40
, pp. 10481
-
-
Pashley, M.D.1
-
17
-
-
33744598738
-
-
W. Harrison, J. Vac. Sci. Technol. 16, 1492 (1979); M. D. Pashley, Phys. Rev. B 40, 10 481 (1989); J. E. Northrup and S. Froyen, ibid. 50, 2015 (1994).
-
(1994)
Phys. Rev. B
, vol.50
, pp. 2015
-
-
Northrup, J.E.1
Froyen, S.2
-
18
-
-
3342877612
-
-
A. R. Sandy, S. G. J. Mochrie, D. M. Zehner, G. Grübel, K. G. Huang, and D. Gibbs, Phys. Rev. Lett. 68, 2192 (1992).
-
(1992)
Phys. Rev. Lett.
, vol.68
, pp. 2192
-
-
Sandy, A.R.1
Mochrie, S.G.J.2
Zehner, D.M.3
Grübel, G.4
Huang, K.G.5
Gibbs, D.6
-
19
-
-
0027557080
-
-
D. L. Abernathy, D. Gibbs, G. Grübel, K. G. Huang, S. G. J. Mochrie, A. R. Sandy, and D. M. Zehner, Surf. Sci. 283, 260 (1993).
-
(1993)
Surf. Sci.
, vol.283
, pp. 260
-
-
Abernathy, D.L.1
Gibbs, D.2
Grübel, G.3
Huang, K.G.4
Mochrie, S.G.J.5
Sandy, A.R.6
Zehner, D.M.7
-
20
-
-
0001197123
-
-
U. Harten, A. M. Lahee, J. P. Toennies, and Ch. Wöll, Phys. Rev. Lett. 54, 2619 (1985).
-
(1985)
Phys. Rev. Lett.
, vol.54
, pp. 2619
-
-
Harten, U.1
Lahee, A.M.2
Toennies, J.P.3
Wöll, Ch.4
-
21
-
-
11644311869
-
-
unpublished
-
A. R. Smith, R. M. Feenstra, D. W. Greve, M.-S. Shin, M. Skowronski, J. Neugebauer, and J. E. Northrup (unpublished).
-
-
-
Smith, A.R.1
Feenstra, R.M.2
Greve, D.W.3
Shin, M.-S.4
Skowronski, M.5
Neugebauer, J.6
Northrup, J.E.7
-
22
-
-
0001453511
-
-
Proper treatment of STM tips in order to achieve reproducible spectroscopic features has been discussed in detail elsewhere; see, for example, R. M. Feenstra, Phys. Rev. B 50, 4561 (1994).
-
(1994)
Phys. Rev. B
, vol.50
, pp. 4561
-
-
Feenstra, R.M.1
-
24
-
-
11644256741
-
-
note
-
The lateral calibration of the STM depends on the length of the probe tip, due to the bending motion of the tube scanner.
-
-
-
-
25
-
-
0003708258
-
-
Physical Electronics Division, Eden Prairie, MN
-
L. E. Davis, N. C. MacDonald, P. W. Palmberg, G. E. Riach, and R. E. Weber, Handbook of Auger Electron Spectroscopy, 2nd ed. (Physical Electronics Division, Eden Prairie, MN, 1978), p. 13.
-
(1978)
Handbook of Auger Electron Spectroscopy, 2nd Ed.
, pp. 13
-
-
Davis, L.E.1
MacDonald, N.C.2
Palmberg, P.W.3
Riach, G.E.4
Weber, R.E.5
-
26
-
-
11644274810
-
-
note
-
We note that the Ga/N Auger ratio depends on the details of the given reconstruction. For example, the adatoms making up the GaN(0001)3 × 3 reconstruction are known from theoretical calculation to be at a height of only 0.9 Å above the first Ga adlayer. If this value is used in the Auger model calculation, the computed Ga/N ratio for the 3 × 3 is 0.70. Using a height of 2.1 Å above the first Ga adlayer yields a Ga/N ratio of 0.74. But of course the higher order reconstructions, such as 6 × 6 and c(6 × 12), may contain adatoms at heights greater than 0.9 Å above the first Ga adlayer but somewhat less that 2.1 Å. In fact, the calculated Ga/N ratios using both 0.9 and 2.1 Å adatom heights above the first Ga adlayer bracket the experimentally measured values shown in Fig. 6(a).
-
-
-
|