메뉴 건너뛰기




Volumn 67, Issue 6, 2005, Pages 515-539

Immune model-based fault diagnosis

Author keywords

Artificial immune regulation; Fault alarm concentration; Fault detection and isolation; Immune model; Model based fault diagnosis

Indexed keywords

ARTIFICIAL INTELLIGENCE; COMPUTER SIMULATION; DATA PROCESSING; NONLINEAR SYSTEMS; SENSORS;

EID: 10644295517     PISSN: 03784754     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.matcom.2004.07.004     Document Type: Article
Times cited : (36)

References (49)
  • 1
    • 84950943535 scopus 로고
    • On-line fault detection in uncertain nonlinear systems using diagnostic observers-a survey
    • P.M. Frank, On-line fault detection in uncertain nonlinear systems using diagnostic observers-a survey, Int. J. Syst. Sci. 25 (1994) 2129-2154.
    • (1994) Int. J. Syst. Sci. , vol.25 , pp. 2129-2154
    • Frank, P.M.1
  • 3
    • 0024122587 scopus 로고
    • Survey of model-based failure detection and isolation in complex plants
    • J.J. Gertler, Survey of model-based failure detection and isolation in complex plants, IEEE Control Syst. Mag. 8 (6) (1988) 3-11.
    • (1988) IEEE Control Syst. Mag. , vol.8 , Issue.6 , pp. 3-11
    • Gertler, J.J.1
  • 7
    • 0029394224 scopus 로고
    • Nonlinear parity equation based residual generation for diagnosis of automotive engine fault
    • V. Krishnaswami, G.C. Luh, G. Rizzoni, Nonlinear parity equation based residual generation for diagnosis of automotive engine fault, Control Eng. Pract. 3 (10) (1995) 1385-1392.
    • (1995) Control Eng. Pract. , vol.3 , Issue.10 , pp. 1385-1392
    • Krishnaswami, V.1    Luh, G.C.2    Rizzoni, G.3
  • 8
    • 0037201080 scopus 로고    scopus 로고
    • Passive robust fault detection using fuzzy parity equations
    • V. Puig, J. Quevedo, Passive robust fault detection using fuzzy parity equations, Math. Comput. Simul. 60 (3/5) (2002) 193-207.
    • (2002) Math. Comput. Simul. , vol.60 , Issue.3-5 , pp. 193-207
    • Puig, V.1    Quevedo, J.2
  • 9
    • 0029346093 scopus 로고
    • Fault detection and isolation by a continuous parity space method
    • A. Medvedev, Fault detection and isolation by a continuous parity space method, Automatica 31 (1995) 1039-1044.
    • (1995) Automatica , vol.31 , pp. 1039-1044
    • Medvedev, A.1
  • 10
    • 0030151149 scopus 로고    scopus 로고
    • Observer-based supervision and fault detection in robots using nonlinear and fuzzy logic residual evaluation
    • H. Schneider, P.M. Frank, Observer-based supervision and fault detection in robots using nonlinear and fuzzy logic residual evaluation, IEEE Trans. Control Syst. Technol. 4 (3) (1996) 274-282.
    • (1996) IEEE Trans. Control Syst. Technol. , vol.4 , Issue.3 , pp. 274-282
    • Schneider, H.1    Frank, P.M.2
  • 11
    • 0031147879 scopus 로고    scopus 로고
    • Observer-based fault detection and isolation: Robustness and applications
    • R.J. Patton, J. Chen, Observer-based fault detection and isolation: robustness and applications, Control Eng. Pract. 5 (5) (1996) 671-682.
    • (1996) Control Eng. Pract. , vol.5 , Issue.5 , pp. 671-682
    • Patton, R.J.1    Chen, J.2
  • 12
    • 0033075242 scopus 로고    scopus 로고
    • Fuzzy-model-based parity equations for fault isolation
    • P. Balle, Fuzzy-model-based parity equations for fault isolation, Control Eng. Pract. 7 (2) (1999) 261-270.
    • (1999) Control Eng. Pract. , vol.7 , Issue.2 , pp. 261-270
    • Balle, P.1
  • 13
    • 0025421966 scopus 로고
    • Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy -a survey of some new results
    • P.M. Frank, Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy -a survey of some new results, Automatica 26 (1990) 459-474.
    • (1990) Automatica , vol.26 , pp. 459-474
    • Frank, P.M.1
  • 14
    • 0036133079 scopus 로고    scopus 로고
    • Neural networks-based scheme for system failure detection and diagnosis
    • Y.M. Chen, M.L. Lee, Neural networks-based scheme for system failure detection and diagnosis, Math. Comput. Simul. 58 (2002) 101-109.
    • (2002) Math. Comput. Simul. , vol.58 , pp. 101-109
    • Chen, Y.M.1    Lee, M.L.2
  • 15
    • 0037201076 scopus 로고    scopus 로고
    • Fault detection and isolation in non-linear systems by using oversized neural networks
    • P. Thomas, D. Lefebvre, Fault detection and isolation in non-linear systems by using oversized neural networks, Math. Comput. Simul. 60 (2002) 181-192.
    • (2002) Math. Comput. Simul. , vol.60 , pp. 181-192
    • Thomas, P.1    Lefebvre, D.2
  • 16
    • 0037083202 scopus 로고    scopus 로고
    • Hybrid model building methodology using unsupervised fuzzy clustering and supervised neural networks
    • M. Ronen, Y. Shabtai, H. Guterman, Hybrid model building methodology using unsupervised fuzzy clustering and supervised neural networks, Biotechnol. Bioeng. 77 (4) (2002) 420-429.
    • (2002) Biotechnol. Bioeng. , vol.77 , Issue.4 , pp. 420-429
    • Ronen, M.1    Shabtai, Y.2    Guterman, H.3
  • 17
    • 0348108148 scopus 로고    scopus 로고
    • Validity index for crisp and fuzzy clusters
    • M.K. Pakhira, S. Bandyopadhyay, U. Maulik, Validity index for crisp and fuzzy clusters, Pattern Recog. 37 (3) (2004) 487-501.
    • (2004) Pattern Recog. , vol.37 , Issue.3 , pp. 487-501
    • Pakhira, M.K.1    Bandyopadhyay, S.2    Maulik, U.3
  • 18
    • 0347409033 scopus 로고    scopus 로고
    • Competitive algorithms for the clustering of noisy data
    • T.N. Yang, S.D. Wang, Competitive algorithms for the clustering of noisy data, Fuzzy Sets Syst. 141 (2) (2004) 281-299.
    • (2004) Fuzzy Sets Syst. , vol.141 , Issue.2 , pp. 281-299
    • Yang, T.N.1    Wang, S.D.2
  • 19
    • 0037387749 scopus 로고    scopus 로고
    • Using immunology principles for fault detection
    • [ 19] P. J. Costa Branco, J. A. Dente, R. Vilela Mendes, Using immunology principles for fault detection, IEEE Trans. Ind. Electron. 50 (2) (2003) 362-373.
    • (2003) IEEE Trans. Ind. Electron. , vol.50 , Issue.2 , pp. 362-373
    • Branco, P.J.C.1    Dente, J.A.2    Mendes, R.V.3
  • 26
    • 0004125427 scopus 로고    scopus 로고
    • Artificial immune systems: Part I - Basic theory and applications
    • L.N. de Castro, F. J. Von Zuben, Artificial immune systems: Part I - basic theory and applications, Technical Report TR-DCA 01/99, 1999.
    • (1999) Technical Report , vol.TR-DCA 01-99
    • De Castro, L.N.1    Von Zuben, F.J.2
  • 33
    • 0001734662 scopus 로고    scopus 로고
    • The Baldwin effect in the immune system: Learning by somatic hypermutation
    • R.K. Belew, M. Mitchell (Eds.), Addison-Wesley, Reading, MA
    • R. Hightower, S. Forrest, A.S. Perelson, The Baldwin effect in the immune system: learning by somatic hypermutation, in: R.K. Belew, M. Mitchell (Eds.), Adaptive Individuals in Evolving Populations, Addison-Wesley, Reading, MA, 1996, pp. 159-167.
    • (1996) Adaptive Individuals in Evolving Populations , pp. 159-167
    • Hightower, R.1    Forrest, S.2    Perelson, A.S.3
  • 34
    • 0004970351 scopus 로고    scopus 로고
    • Data analysis using artificial immune systems, cluster analysis and Kohonen networks: Some comparisons
    • J. Timmis, M. Neal, J. Hunt, Data analysis using artificial immune systems, cluster analysis and Kohonen networks: some comparisons, in: IEEE International Conference on Systems, Man, and Cybernetics, 1999, pp. 922-927.
    • (1999) IEEE International Conference on Systems, Man, and Cybernetics , pp. 922-927
    • Timmis, J.1    Neal, M.2    Hunt, J.3
  • 36
    • 10644236630 scopus 로고    scopus 로고
    • Artificial immune network-based nonlinear system identification
    • The Chinese Society of Mechanical Engineers
    • G.C. Luh, W.C. Cheng, Artificial immune network-based nonlinear system identification, in: The 20th National Conference on Mechanical Engineering, The Chinese Society of Mechanical Engineers, 2003, pp. 253-260.
    • (2003) The 20th National Conference on Mechanical Engineering , pp. 253-260
    • Luh, G.C.1    Cheng, W.C.2
  • 39
    • 0142196084 scopus 로고    scopus 로고
    • Structure identification of generalized adaptive neuro-fuzzy inference systems
    • M. Fazle Azeem, M. Hanmandlu, N. Ahmad, Structure identification of generalized adaptive neuro-fuzzy inference systems, IEEE Trans. Fuzzy Syst. 11 (5) (2003) 666-681.
    • (2003) IEEE Trans. Fuzzy Syst. , vol.11 , Issue.5 , pp. 666-681
    • Azeem, M.F.1    Hanmandlu, M.2    Ahmad, N.3
  • 40
    • 0031192645 scopus 로고    scopus 로고
    • An investigation of mountain method clustering for large data sets
    • R.P. Velthuizen, L.O. Hall, L.P. Clarke, M.L. Silbiger, An investigation of mountain method clustering for large data sets, Pattern Recog. 30 (7) (1997) 1121-1135.
    • (1997) Pattern Recog. , vol.30 , Issue.7 , pp. 1121-1135
    • Velthuizen, R.P.1    Hall, L.O.2    Clarke, L.P.3    Silbiger, M.L.4
  • 41
    • 0032141636 scopus 로고    scopus 로고
    • Generating optimal adaptive fuzzy-neural models of dynamical systems with applications to control
    • S. Barada, H. Singh, Generating optimal adaptive fuzzy-neural models of dynamical systems with applications to control, IEEE Trans. Syst. Man Cybern. C 28 (3) (1998) 371-391.
    • (1998) IEEE Trans. Syst. Man Cybern. C , vol.28 , Issue.3 , pp. 371-391
    • Barada, S.1    Singh, H.2
  • 44
    • 0031996837 scopus 로고    scopus 로고
    • Decentralized adaptive fuzzy control of robot manipulators
    • J. Yaochu, Decentralized adaptive fuzzy control of robot manipulators, IEEE Trans. Syst. Man Cybern. B 28 (1) (1998) 47-57.
    • (1998) IEEE Trans. Syst. Man Cybern. B , vol.28 , Issue.1 , pp. 47-57
    • Yaochu, J.1
  • 45
    • 0036532931 scopus 로고    scopus 로고
    • Structured residual vector-based approach to sensor fault detection and isolation
    • W. Li, S. Shah, Structured residual vector-based approach to sensor fault detection and isolation, J. Process Control 12 (3) (2002) 429-443.
    • (2002) J. Process Control , vol.12 , Issue.3 , pp. 429-443
    • Li, W.1    Shah, S.2
  • 46
    • 0022011031 scopus 로고
    • Input-output parametric models for non-linear systems. I. Deterministic non-linear systems
    • I.J. Leontaritis, S.A. Billings, Input-output parametric models for non-linear systems. I. Deterministic non-linear systems, Int. J. Control. 41 (2) (1985) 303-328.
    • (1985) Int. J. Control. , vol.41 , Issue.2 , pp. 303-328
    • Leontaritis, I.J.1    Billings, S.A.2
  • 47
    • 0022011215 scopus 로고
    • Input-Output parametric models for non-linear systems. II. Stochastic non-linear systems
    • I.J. Leontaritis, S.A. Billings, Input-Output parametric models for non-linear systems. II. Stochastic non-linear systems, Int. J. Control. 41 (2) (1985) 329-344.
    • (1985) Int. J. Control. , vol.41 , Issue.2 , pp. 329-344
    • Leontaritis, I.J.1    Billings, S.A.2
  • 48
    • 0025399567 scopus 로고
    • Identification and control of dynamical systems using neural networks
    • K.S. Narendra, K. Parthasarathy, Identification and control of dynamical systems using neural networks, IEEE Trans. Neural Network 1(1) (1990) 4-27.
    • (1990) IEEE Trans. Neural Network , vol.1 , Issue.1 , pp. 4-27
    • Narendra, K.S.1    Parthasarathy, K.2
  • 49
    • 0033693594 scopus 로고    scopus 로고
    • Inversion control of non-linear systems with an inverse NARX model identified using genetic algorithms
    • G.C. Luh, C. Y. Wu, Inversion control of non-linear systems with an inverse NARX model identified using genetic algorithms, Proc. Inst. Mech. Eng. I: J. Syst. Control Eng. 214 (2000) 259-271.
    • (2000) Proc. Inst. Mech. Eng. I: J. Syst. Control Eng. , vol.214 , pp. 259-271
    • Luh, G.C.1    Wu, C.Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.