메뉴 건너뛰기




Volumn 42, Issue 23, 2003, Pages 5836-5849

Orthogonal Nonlinear Partial Least-Squares Regression

Author keywords

[No Author keywords available]

Indexed keywords

BENCHMARKING; LEAST SQUARES APPROXIMATIONS; NEURAL NETWORKS; REGRESSION ANALYSIS;

EID: 0242330151     PISSN: 08885885     EISSN: None     Source Type: Journal    
DOI: 10.1021/ie0109051     Document Type: Article
Times cited : (21)

References (51)
  • 3
    • 0029199640 scopus 로고    scopus 로고
    • On Data-Based Modelling Techniques for Fermentation Process
    • Warnes, M. R.; Glassey, J.; Montague, G. A.; Kara, B. On Data-Based Modelling Techniques for Fermentation Process. Process Biochem. 1996, 31, 147.
    • (1996) Process Biochem. , vol.31 , pp. 147
    • Warnes, M.R.1    Glassey, J.2    Montague, G.A.3    Kara, B.4
  • 4
    • 0032563614 scopus 로고    scopus 로고
    • PLS Regression on Wavelet Compressed NIR Spectra
    • Trygg, J.; Wold, S. PLS Regression on Wavelet Compressed NIR Spectra. Chemom. Intell. Lab. Syst. 1998, 42, 209.
    • (1998) Chemom. Intell. Lab. Syst. , vol.42 , pp. 209
    • Trygg, J.1    Wold, S.2
  • 5
    • 0033577715 scopus 로고    scopus 로고
    • Multiple Regression for Environmental Data: Nonlinearities and Prediction Bias
    • Geladi, P.; Hadjiiski, L.; Hopke, H. Multiple Regression for Environmental Data: Nonlinearities and Prediction Bias. Chemom. Intell. Lab. Syst. 1999, 47, 165.
    • (1999) Chemom. Intell. Lab. Syst. , vol.47 , pp. 165
    • Geladi, P.1    Hadjiiski, L.2    Hopke, H.3
  • 7
  • 8
  • 9
    • 84898932856 scopus 로고    scopus 로고
    • Overfitting in Neural Networks: Back-Propagation, Conjugate Gradient, and Early Stopping
    • Leen, T., Dietterich, T. G., Tresp, V., Eds.; MIT Press: Cambridge, MA
    • Caruana, R.; Lawrence, S.; Giles, C. L. Overfitting in Neural Networks: Back-Propagation, Conjugate Gradient, and Early Stopping. In Advances in Neural Information Processing Systems, NIPS 13; Leen, T., Dietterich, T. G., Tresp, V., Eds.; MIT Press: Cambridge, MA, 2001; p 402.
    • (2001) Advances in Neural Information Processing Systems, NIPS 13 , pp. 402
    • Caruana, R.1    Lawrence, S.2    Giles, C.L.3
  • 10
    • 0026849117 scopus 로고
    • Determining Model Structure for Neural Models by Network Pruning
    • Bhat, N. V.; McAvoy, T. J. Determining Model Structure for Neural Models by Network Pruning, Comput. Chem. Eng. 1992, 16, 271.
    • (1992) Comput. Chem. Eng. , vol.16 , pp. 271
    • Bhat, N.V.1    McAvoy, T.J.2
  • 11
    • 0000957593 scopus 로고
    • Principal Components Regression in Exploratory Statistical Research
    • Massy, W. F. Principal Components Regression in Exploratory Statistical Research. JASA 1965, 60, 234.
    • (1965) JASA , vol.60 , pp. 234
    • Massy, W.F.1
  • 14
    • 0000093459 scopus 로고
    • Quadradic PLS Regression
    • Höskuldson, A. Quadradic PLS Regression. J. Chemom. 1992, 6, 307.
    • (1992) J. Chemom. , vol.6 , pp. 307
    • Höskuldson, A.1
  • 15
    • 0033611717 scopus 로고    scopus 로고
    • Nonlinear Projection to Latent Structures Revisited (The Quadratic PLS Algorithm)
    • Baffi, G.; Martin, E. B.; Morris, A. J. Nonlinear Projection to Latent Structures Revisited (The Quadratic PLS Algorithm). Comput. Chem. Eng. 1999, 23, 395.
    • (1999) Comput. Chem. Eng. , vol.23 , pp. 395
    • Baffi, G.1    Martin, E.B.2    Morris, A.J.3
  • 16
    • 0026578543 scopus 로고
    • Nonlinear Partial Least Squares Modelling: II. Spline Inner Relation
    • Wold, S. Nonlinear Partial Least Squares Modelling: II. Spline Inner Relation. Chemom. Intell. Lab. Syst. 1992, 14, 71.
    • (1992) Chemom. Intell. Lab. Syst. , vol.14 , pp. 71
    • Wold, S.1
  • 17
    • 0026853320 scopus 로고
    • Nonlinear PLS Modeling Using Neural Networks
    • Qin, S. J.; MeAvoy, T. J. Nonlinear PLS Modeling Using Neural Networks. Comput. Chem. Eng. 1992, 16, 379.
    • (1992) Comput. Chem. Eng. , vol.16 , pp. 379
    • Qin, S.J.1    MeAvoy, T.J.2
  • 19
    • 0033544443 scopus 로고    scopus 로고
    • Nonlinear Projection to Latent Structures Revisited (The Neural Network PLS Algorithm)
    • Baffi, G.; Martin, E. B.; Morris, A. J. Nonlinear Projection to Latent Structures Revisited (The Neural Network PLS Algorithm). Comput. Chem. Eng. 1999, 23, 1293.
    • (1999) Comput. Chem. Eng. , vol.23 , pp. 1293
    • Baffi, G.1    Martin, E.B.2    Morris, A.J.3
  • 21
    • 84946640223 scopus 로고
    • Transformation of the independent variables
    • Box, G. E. P.; Tidwell, W. G. Transformation of the independent variables. Technometrics 1962, 4, 531.
    • (1962) Technometrics , vol.4 , pp. 531
    • Box, G.E.P.1    Tidwell, W.G.2
  • 22
    • 0027803588 scopus 로고
    • A Statistical Perspective of Neural Networks for Process Modeling and Control
    • IEEE Press: Piscataway, NJ
    • Qin, S. J. A Statistical Perspective of Neural Networks for Process Modeling and Control. In Proceedings of the International Symposium on Intelligent Control; IEEE Press: Piscataway, NJ, 1993; p 559.
    • (1993) Proceedings of the International Symposium on Intelligent Control , pp. 559
    • Qin, S.J.1
  • 24
    • 0003000612 scopus 로고
    • Nonlinear Estimation by iterative least squares procedures
    • Davis, F., Ed.; Wiley: New York
    • Wold, H. Nonlinear Estimation by iterative least squares procedures. In Research Papers in Statistics; Davis, F., Ed.; Wiley: New York, 1966; p 411.
    • (1966) Research Papers in Statistics , pp. 411
    • Wold, H.1
  • 26
    • 11144325691 scopus 로고
    • Partial Least Squares Regression: A Tutorial
    • Geladi, P.; Kowalski, B. R. Partial Least Squares Regression: A Tutorial. Anal. Chim. Acta 1986, 185, 1-17.
    • (1986) Anal. Chim. Acta , vol.185 , pp. 1-17
    • Geladi, P.1    Kowalski, B.R.2
  • 27
    • 33845609538 scopus 로고
    • An example of 2-block predictive partial least-squares regression with simulated data
    • Geladi, P.; Kowalski, B. R. An example of 2-block predictive partial least-squares regression with simulated data. Anal. Chim. Acta 1986, 185, 19.
    • (1986) Anal. Chim. Acta , vol.185 , pp. 19
    • Geladi, P.1    Kowalski, B.R.2
  • 28
    • 0026113980 scopus 로고
    • Nonlinear Principal Component Analysis Using Autoassociative Neural Networks
    • Kramer, M. A. Nonlinear Principal Component Analysis Using Autoassociative Neural Networks. AIChE J. 1991, 37, 233.
    • (1991) AIChE J. , vol.37 , pp. 233
    • Kramer, M.A.1
  • 29
    • 0039687285 scopus 로고
    • NNPPSS: Neural Networks Based on PCR and PLS Components Nonlinearized by Smoothers and Splines
    • Frank, I. NNPPSS: Neural Networks Based on PCR and PLS Components Nonlinearized by Smoothers and Splines. Presented at InCINC'94, the first International Chemometrics InterNet Conference, 1994 (http://www.emsl.pnl.gov/docs/incinc/ homepage.html).
    • (1994) InCINC'94, The First International Chemometrics InterNet Conference
    • Frank, I.1
  • 30
    • 0035852402 scopus 로고    scopus 로고
    • A Strategy for Detection and Isolation of Sensor Failures and Process Upsets
    • Doymaz, F.; Romagnoli, J. A.; Palazoglu, A. A Strategy for Detection and Isolation of Sensor Failures and Process Upsets. Chemom. Intell. Lab. Syst. 2001, 55, 109.
    • (2001) Chemom. Intell. Lab. Syst. , vol.55 , pp. 109
    • Doymaz, F.1    Romagnoli, J.A.2    Palazoglu, A.3
  • 31
    • 0030262558 scopus 로고    scopus 로고
    • Multivariate SPC Methods for Process and Product Monitoring
    • Kourti, T.; McGregor, J. F. Multivariate SPC Methods for Process and Product Monitoring. J. Qual. Technol. 1996, 28, 409.
    • (1996) J. Qual. Technol. , vol.28 , pp. 409
    • Kourti, T.1    McGregor, J.F.2
  • 32
    • 0000602068 scopus 로고
    • A Comparison of Neural Networks and Expert Systems Algorithms with Common Multivariate Procedures for Analysis of Social Science Data
    • Garson, D. G. A Comparison of Neural Networks and Expert Systems Algorithms with Common Multivariate Procedures for Analysis of Social Science Data. Social Sci. Comput. Rev. 1991, 9, 400.
    • (1991) Social Sci. Comput. Rev. , vol.9 , pp. 400
    • Garson, D.G.1
  • 36
    • 0026373082 scopus 로고
    • Local Training of Radial Basis Function Networks: Towards Solving the Hidden Unit Problem
    • IEEE Press: Piscataway, NJ
    • Holcomb, T.; Morari, M. Local Training of Radial Basis Function Networks: Towards Solving the Hidden Unit Problem. In Proceedings of the ACC; IEEE Press: Piscataway, NJ, 1991; p 2331.
    • (1991) Proceedings of the ACC , pp. 2331
    • Holcomb, T.1    Morari, M.2
  • 37
    • 0026116468 scopus 로고
    • Orthogonal Least Squares Learning Algorithm for Radial Basis Function Networks
    • Chen, S.; Cowan, C. F. N.; Grant, P. M. Orthogonal Least Squares Learning Algorithm for Radial Basis Function Networks. IEEE Trans. Neural Networks 1991, 2, 302.
    • (1991) IEEE Trans. Neural Networks , vol.2 , pp. 302
    • Chen, S.1    Cowan, C.F.N.2    Grant, P.M.3
  • 38
    • 0031891445 scopus 로고    scopus 로고
    • A Sequential Learning Approach for Single Hidden Layer Neural Networks
    • Zhang, J.; Morris, J. A. A Sequential Learning Approach for Single Hidden Layer Neural Networks. Neural Networks 1998, 11, 65.
    • (1998) Neural Networks , vol.11 , pp. 65
    • Zhang, J.1    Morris, J.A.2
  • 39
    • 58149321460 scopus 로고
    • Boosting a Weak Learning Algorithm by Majority
    • Freund, Y. Boosting a Weak Learning Algorithm by Majority. Inf. Comput. 1995, 121, 256.
    • (1995) Inf. Comput. , vol.121 , pp. 256
    • Freund, Y.1
  • 40
    • 0030211964 scopus 로고    scopus 로고
    • Bagging Predictors
    • Breaiman, A. Bagging Predictors. Mach. Learn. 1996, 24, 123.
    • (1996) Mach. Learn. , vol.24 , pp. 123
    • Breaiman, A.1
  • 44
    • 84943274699 scopus 로고
    • A Direct Adaptive Method for Faster Backpropagation Learning: The RPROP Algorithm
    • IEEE Press: Piscataway, NJ
    • Riedmiller, M.; Braun, H. A Direct Adaptive Method for Faster Backpropagation Learning: The RPROP Algorithm. In Proceedings of the IEEE International Conference on Neural Networks; IEEE Press: Piscataway, NJ, 1993; Vol. 1, p 586.
    • (1993) Proceedings of the IEEE International Conference on Neural Networks , vol.1 , pp. 586
    • Riedmiller, M.1    Braun, H.2
  • 46
    • 0026849990 scopus 로고
    • Autoassociative Neural Networks
    • Kramer, M. A. Autoassociative Neural Networks. Comput. Chem. Eng. 1992, 16, 313.
    • (1992) Comput. Chem. Eng. , vol.16 , pp. 313
    • Kramer, M.A.1
  • 47
    • 0033198809 scopus 로고    scopus 로고
    • Detection, Identification, Reconstruction of Faulty Sensors with Maximized Sensitivity
    • Qin, S. J.; Li, W. Detection, Identification, Reconstruction of Faulty Sensors with Maximized Sensitivity, AIChE J. 1999, 45, 1963.
    • (1999) AIChE J. , vol.45 , pp. 1963
    • Qin, S.J.1    Li, W.2
  • 49
    • 0030127409 scopus 로고    scopus 로고
    • Statistical Process Monitoring and Disturbance Diagnosis in Multivariate Continuous Processes
    • Raich, A.; Çinar, A. Statistical Process Monitoring and Disturbance Diagnosis in Multivariate Continuous Processes. AIChE J. 1996, 42, 995.
    • (1996) AIChE J. , vol.42 , pp. 995
    • Raich, A.1    Çinar, A.2
  • 50
    • 0030792279 scopus 로고    scopus 로고
    • Development of a freeze-dried albumin-free formulation of recombinant factor VIII SQ
    • Österberg, T.; Fatouros, A.; Mikaelsson, M. Development of a freeze-dried albumin-free formulation of recombinant factor VIII SQ. Pharm. Res. 1997, 14, 892.
    • (1997) Pharm. Res. , vol.14 , pp. 892
    • Österberg, T.1    Fatouros, A.2    Mikaelsson, M.3
  • 51
    • 0026939191 scopus 로고
    • The Manufacturing of the Recombinant Factor VIII - Kogenate
    • Boedeker, B. G. D. The Manufacturing of the Recombinant Factor VIII - Kogenate. Transfus. Med. Rev. 1992, 6, 256.
    • (1992) Transfus. Med. Rev. , vol.6 , pp. 256
    • Boedeker, B.G.D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.