메뉴 건너뛰기




Volumn E86-D, Issue 4, 2003, Pages 736-751

A dynamic node decaying method for pruning artificial neural networks

Author keywords

ANNs; Classification; Competition; Decaying; Pruning

Indexed keywords

BACKPROPAGATION; COMPUTATIONAL COMPLEXITY; ERROR ANALYSIS; LEARNING ALGORITHMS; PROBLEM SOLVING; SENSITIVITY ANALYSIS;

EID: 0142186186     PISSN: 09168532     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (7)

References (27)
  • 1
    • 0031146959 scopus 로고    scopus 로고
    • Constructive algorithms for structure learning in feedforward neural networks for regression problems
    • T.-Y. Kwok and D.-Y. Yeung, "Constructive algorithms for structure learning in feedforward neural networks for regression problems," IEEE Trans. Neural Netw., vol.8, no.3, pp.630-645, 1997.
    • (1997) IEEE Trans. Neural Netw. , vol.8 , Issue.3 , pp. 630-645
    • Kwok, T.-Y.1    Yeung, D.-Y.2
  • 2
    • 0027662338 scopus 로고
    • Pruning algorithms - A survey
    • R. Reed, "Pruning algorithms - A survey," IEEE Trans. Neural Netw., vol.4, no.5, pp.740-747, 1993.
    • (1993) IEEE Trans. Neural Netw. , vol.4 , Issue.5 , pp. 740-747
    • Reed, R.1
  • 3
    • 0024904547 scopus 로고
    • Improving generalization in back-propagation networks with distributed bottleneck
    • Washington DC
    • J.K. Kruschke, "Improving generalization in back-propagation networks with distributed bottleneck," Proc. Int. Joint Conf. on Neural Networks, vol.I, pp.443-447, Washington DC, 1989.
    • (1989) Proc. Int. Joint Conf. on Neural Networks , vol.1 , pp. 443-447
    • Kruschke, J.K.1
  • 4
    • 0031142667 scopus 로고    scopus 로고
    • An iterative pruning algorithm for feedforward neural networks
    • G. Castellano, A.M. Fanelli, and M. Pelillo, "An iterative pruning Algorithm for feedforward neural networks," IEEE Trans. Neural Netw., vol.8, no.3, pp.519-531, 1997.
    • (1997) IEEE Trans. Neural Netw. , vol.8 , Issue.3 , pp. 519-531
    • Castellano, G.1    Fanelli, A.M.2    Pelillo, M.3
  • 5
    • 0030130724 scopus 로고    scopus 로고
    • Structural learning with forgetting
    • M. Ishikawa, "Structural learning with forgetting," Neural Networks, vol.9, no.3, pp.509-521, 1996.
    • (1996) Neural Networks , vol.9 , Issue.3 , pp. 509-521
    • Ishikawa, M.1
  • 6
    • 0000900876 scopus 로고
    • Skeletonization: A technique for trimming the fat from a network via relevance assessment
    • Morgan Kaufman, San Mateo, CA
    • M.C. Mozer and P. Smolensky, "Skeletonization: A technique for trimming the fat from a network via relevance assessment," Advances in Neural Information Processing Systems, vol.1, pp.107-115, Morgan Kaufman, San Mateo, CA, 1989.
    • (1989) Advances in Neural Information Processing Systems , vol.1 , pp. 107-115
    • Mozer, M.C.1    Smolensky, P.2
  • 8
    • 0001234705 scopus 로고
    • Second order derivatives for network pruning: Optimal brain surgeon
    • Morgan Kaufman, San Mateo, CA
    • B. Hassibi and D.G. Stork, "Second order derivatives for network pruning: Optimal brain surgeon," Advances in Neural Information Processing Systems, vol.5, pp.162-171, Morgan Kaufman, San Mateo, CA, 1993.
    • (1993) Advances in Neural Information Processing Systems , vol.5 , pp. 162-171
    • Hassibi, B.1    Stork, D.G.2
  • 9
    • 0026017007 scopus 로고
    • Creating artificial neural networks that generalize
    • J. Seitsta and R.J. F Dow, "Creating artificial neural networks that generalize," Neural Networks, vol.4, pp.67-79, 1991.
    • (1991) Neural Networks , vol.4 , pp. 67-79
    • Seitsta, J.1    Dow, R.J.F.2
  • 10
    • 0142169585 scopus 로고    scopus 로고
    • The effective size of neural networks: A principle component approach
    • Nashville, TN
    • D. Opitz, "The effective size of neural networks: A principle component approach," 14th Int. Conference on Machine Learning, pp. 263-271, Nashville, TN, 1997.
    • (1997) 14th Int. Conference on Machine Learning , pp. 263-271
    • Opitz, D.1
  • 12
    • 0027037245 scopus 로고
    • A back propagation algorithm which automatically determines the number of association units
    • Singapore
    • K. Murase, Y. Matsunaga, and Y. Nakaade, "A back propagation algorithm which automatically determines the number of association units," Proc. IJCNN, pp. 783-788, Singapore, 1991.
    • (1991) Proc. IJCNN , pp. 783-788
    • Murase, K.1    Matsunaga, Y.2    Nakaade, Y.3
  • 13
    • 0011677187 scopus 로고    scopus 로고
    • A modified back propagation algorithm that automatically removes the redundant hidden units by competition
    • March
    • Y. Matsunaga, K. Murase, O. Yamakawa, and M. Tanifuji, "A modified back propagation algorithm that automatically removes the redundant hidden units by competition," IEICE Trans. Inf. & Syst. (Japanese Edition), vol.J79-D-II, no.3, pp.403-412, March 1996.
    • (1996) IEICE Trans. Inf. & Syst. (Japanese Edition) , vol.J79-D-II , Issue.3 , pp. 403-412
    • Matsunaga, Y.1    Murase, K.2    Yamakawa, O.3    Tanifuji, M.4
  • 14
    • 0002676224 scopus 로고
    • A back-propagation algorithm with automatic reduction of association units in multilayer neural network
    • Aug.
    • Y. Matsunaga, Y. Nakada, O. Yamakawa, and K. Murase, "A back-propagation algorithm with automatic reduction of association units in multilayer neural network," IEICE Trans. Inf. & Syst. (Japanese Edition), vol.J74-D-II, no.8, pp.1118-1121, Aug. 1991.
    • (1991) IEICE Trans. Inf. & Syst. (Japanese Edition) , vol.J74-D-II , Issue.8 , pp. 1118-1121
    • Matsunaga, Y.1    Nakada, Y.2    Yamakawa, O.3    Murase, K.4
  • 15
    • 0027850951 scopus 로고
    • Removal of hidden units and weights for back propagation network
    • M. Hagiwara, "Removal of hidden units and weights for Back propagation network," Proc. IJCNN, vol.1, pp.351-354, 1993.
    • (1993) Proc. IJCNN , vol.1 , pp. 351-354
    • Hagiwara, M.1
  • 16
    • 0004042460 scopus 로고
    • Proben1-A set of neural network benchmark problems and benchmarking rules
    • Tech. Report, Karlsruhe, Germany, Sept.
    • L. Prechelt, "Proben1-A set of neural network benchmark problems and benchmarking rules," Tech. Report, Karlsruhe, Germany, Sept. 1994.
    • (1994)
    • Prechelt, L.1
  • 17
    • 0031194103 scopus 로고    scopus 로고
    • Connection pruning with static and adaptive pruning schedules
    • July
    • L. Prechelt, "Connection pruning with static and adaptive pruning schedules," Neurocomputing, vol.16, no.1, pp.49-61, July 1997.
    • (1997) Neurocomputing , vol.16 , Issue.1 , pp. 49-61
    • Prechelt, L.1
  • 18
    • 0000646059 scopus 로고
    • Learning internal representation by error propagation
    • ed. D.E. Rumelhart and J.L. McClelland; MIT Press, Cambridge, MA
    • D.E. Rumelhart, G.E. Hinton, and R.J Williams, "Learning internal representation by error propagation," in Parallel Distributed Processing, vol.1, ed. D.E. Rumelhart and J.L. McClelland, pp.318-362, MIT Press, Cambridge, MA, 1986.
    • (1986) Parallel Distributed Processing , vol.1 , pp. 318-362
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 19
    • 0034811555 scopus 로고    scopus 로고
    • A new algorithm to design compact two hidden layer artificial neural networks
    • Md. Monirul Islam and K. Murase, "A new algorithm to design compact two hidden layer artificial neural networks," Neural Networks, vol.14, pp. 1265-1278, 2001.
    • (2001) Neural Networks , vol.14 , pp. 1265-1278
    • Monirul Islam, Md.1    Murase, K.2
  • 20
    • 0034167948 scopus 로고    scopus 로고
    • Radical pruning: A method to construct skeleton radial basis function networks
    • M.F. Augusteijn and K.A. Shaw, "Radical pruning: A method to construct skeleton radial basis function networks." Int. Journal of Neural Systems., vol.2, pp.143-154, 2000.
    • (2000) Int. Journal of Neural Systems , vol.2 , pp. 143-154
    • Augusteijn, M.F.1    Shaw, K.A.2
  • 21
    • 0031143030 scopus 로고    scopus 로고
    • A new evolutionary system for evolving artificial neural networks
    • May
    • X. Yao and Y. Liu, "A new evolutionary system for evolving artificial neural networks," IEEE Trans. Neural Netw., vol.8, no.3, pp.694-713, May 1997.
    • (1997) IEEE Trans. Neural Netw. , vol.8 , Issue.3 , pp. 694-713
    • Yao, X.1    Liu, Y.2
  • 22
  • 23
    • 0028495332 scopus 로고
    • Pruning recurrent neural networks for improving generalization performance
    • C. Giles and C.W. Omlin, "Pruning recurrent neural networks for improving generalization performance," IEEE Trans. Neural Netw., vol.5, no.5, pp.848-851, 1994.
    • (1994) IEEE Trans. Neural Netw. , vol.5 , Issue.5 , pp. 848-851
    • Giles, C.1    Omlin, C.W.2
  • 24
    • 0035505658 scopus 로고    scopus 로고
    • A new pruning heuristic based on variance analysis of sensitivity information
    • Nov.
    • A.P. Engelbrecht, "A new pruning heuristic based on variance analysis of sensitivity information," IEEE Trans. Neural Netw., vol.12, no.6, pp.1386-1399, Nov. 2001.
    • (2001) IEEE Trans. Neural Netw. , vol.12 , Issue.6 , pp. 1386-1399
    • Engelbrecht, A.P.1
  • 25
    • 0032028728 scopus 로고    scopus 로고
    • The sample complexity of pattern recognition with neural networks: The size of the weights is more important than the size of the network
    • March
    • P.L. Bartlett, "The sample complexity of pattern recognition with neural networks: The size of the weights is more important than the size of the network," IEEE Trans. Inf. Theory, vol.44, no.2, pp.525-536, March 1998.
    • (1998) IEEE Trans. Inf. Theory , vol.44 , Issue.2 , pp. 525-536
    • Bartlett, P.L.1
  • 27
    • 0035444457 scopus 로고    scopus 로고
    • A new crossover operator and its application to artificial neural networks evolution
    • Sept.
    • Md. Monirul Islam and K. Murase, "A new crossover operator and its application to artificial neural networks evolution," IEICE Trans. Inf. & Syst., vol.E84-D, no.9, pp.1144-1154, Sept. 2001.
    • (2001) IEICE Trans. Inf. & Syst. , vol.E84-D , Issue.9 , pp. 1144-1154
    • Monirul Islam, Md.1    Murase, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.