-
1
-
-
23044528237
-
Finite-state Reber automaton and the recurrent neural networks trained in supervised and unsupervised manner
-
In: H. Bischof, G. Dorffner and K. Hornik (eds); Springer-Verlag
-
Čerňanský M., Beňušková L.: Finite-state Reber automaton and the recurrent neural networks trained in supervised and unsupervised manner. In: H. Bischof, G. Dorffner and K. Hornik (eds), LNCS 2130. Artificial Neural Networks - ICANN'2001, Springer-Verlag, 2001, pp. 737-742.
-
(2001)
LNCS 2130. Artificial Neural Networks - ICANN'2001
, pp. 737-742
-
-
Čerňanský, M.1
Beňušková, L.2
-
2
-
-
0033212321
-
Toward a connectionist model of recursion in human linguistic performance
-
Christiansen, M. H., Chater, N.: Toward a connectionist model of recursion in human linguistic performance. Cognitive Sci., 23, 1999, pp. 417-437.
-
(1999)
Cognitive Sci.
, vol.23
, pp. 417-437
-
-
Christiansen, M.H.1
Chater, N.2
-
3
-
-
26444565569
-
Finding structure in time
-
Elman J. L.: Finding structure in time. Cognitive Sci., 14, 1990, pp. 179-211.
-
(1990)
Cognitive Sci.
, vol.14
, pp. 179-211
-
-
Elman, J.L.1
-
4
-
-
0042326343
-
Recurrent neural networks with small weights implement finite memory machines
-
Hammer B., Tiño P.: Recurrent neural networks with small weights implement finite memory machines. To appear in Neural Computation.
-
Neural Computation
-
-
Hammer, B.1
Tiño, P.2
-
5
-
-
0038087303
-
The origin of clusters in recurrent neural network state space
-
Lawrence Erlbaum Associates
-
Kolen, J. F.: The origin of clusters in recurrent neural network state space. In: Proc. 16th Annual Conf. of the Cognitive Sci. Soc., Hillsdale, NJ: Lawrence Erlbaum Associates, 1994, pp. 508-513.
-
(1994)
Proc. 16th Annual Conf. of the Cognitive Sci. Soc., Hillsdale, NJ
, pp. 508-513
-
-
Kolen, J.F.1
-
6
-
-
33747598711
-
Natural language grammatical inference with recurrent neural networks
-
Lawrence S., Giles C. L., Fong S.: Natural language grammatical inference with recurrent neural networks. IEEE Trans. Knowledge and Data Engineering, 12, 1, 2000, pp. 126-140.
-
(2000)
IEEE Trans. Knowledge and Data Engineering
, vol.12
, Issue.1
, pp. 126-140
-
-
Lawrence, S.1
Giles, C.L.2
Fong, S.3
-
8
-
-
0038426003
-
Modeling nonlinear dynamics with extended Kalman filter trained recurrent multilayer perceptrons
-
Thesis, McMaster Univ., Canada
-
Patel G. S.: Modeling nonlinear dynamics with extended Kalman filter trained recurrent multilayer perceptrons. Thesis, McMaster Univ., Canada, 2000.
-
(2000)
-
-
Patel, G.S.1
-
9
-
-
0038764011
-
Kalman filters improve LSTM network performance in problems unsolvable by traditional recurrent nets
-
Pérez-Ortiz J. A., Gers F. A., Eck D., Schmidhuber J.: Kalman filters improve LSTM network performance in problems unsolvable by traditional recurrent nets. Neural Networks, 16, 2, 2003, pp. 1-23.
-
(2003)
Neural Networks
, vol.16
, Issue.2
, pp. 1-23
-
-
Pérez-Ortiz, J.A.1
Gers, F.A.2
Eck, D.3
Schmidhuber, J.4
-
10
-
-
0035462333
-
Simple recurrent networks learn contex-free and contex-sensitive languages by counting
-
Rodriguez P.: Simple recurrent networks learn contex-free and contex-sensitive languages by counting. Neural Computation, 13, 2001, pp. 2093-2118.
-
(2001)
Neural Computation
, vol.13
, pp. 2093-2118
-
-
Rodriguez, P.1
-
12
-
-
0042827445
-
Architectural bias in recurrent neural networks - Fractal analysis
-
Tiño P., Hammer B.: Architectural bias in recurrent neural networks - fractal analysis. To appear in Neural Computation.
-
Neural Computation
-
-
Tiño, P.1
Hammer, B.2
-
14
-
-
79955750805
-
An introduction to the Kalman filter
-
TR95-041, Dept. Computer Science, Univ. North Carolina
-
Welch G., Bishop G.: An introduction to the Kalman filter. TR95-041, Dept. Computer Science, Univ. North Carolina, 1995.
-
(1995)
-
-
Welch, G.1
Bishop, G.2
-
15
-
-
0025503558
-
Backpropagation through time; what it does and how to do it
-
Werbos P. J.: Backpropagation through time; what it does and how to do it. Proceedings of the IEEE, 78, 1990, pp. 1550-1560.
-
(1990)
Proceedings of the IEEE
, vol.78
, pp. 1550-1560
-
-
Werbos, P.J.1
-
16
-
-
0013320371
-
Some observations on the use of the extended Kalman filter as a recurrent network learning algorithm
-
TR NU-CCS-92-1, Boston
-
Williams R. J.: Some observations on the use of the extended Kalman filter as a recurrent network learning algorithm. TR NU-CCS-92-1, Boston, 1992.
-
(1992)
-
-
Williams, R.J.1
-
17
-
-
85132302281
-
Training recurrent networks using the extended Kalman filter
-
Baltimore, June
-
Williams R. J.: Training recurrent networks using the extended Kalman filter. In: Proc. Intl. Joint Conf. Neural Networks, 4, Baltimore, June 1992, pp. 241-246.
-
(1992)
Proc. Intl. Joint Conf. Neural Networks
, vol.4
, pp. 241-246
-
-
Williams, R.J.1
-
18
-
-
0001202594
-
A learning algorithm for continually running fully recurrent neural networks
-
Williams R. J., Zipser D.: A learning algorithm for continually running fully recurrent neural networks. Neural Computation, 1, 1989 pp. 270-280.
-
(1989)
Neural Computation
, vol.1
, pp. 270-280
-
-
Williams, R.J.1
Zipser, D.2
-
19
-
-
0001765578
-
Gradient-based learning algorithms for recurrent networks and their computational complexity
-
In: Y. Chauvin and D. E. Rumelhãrt (eds); Lawrence Erlbaum Publishers, Hillsdale, N. J.
-
Williams R. J., Zipser D.: Gradient-based learning algorithms for recurrent networks and their computational complexity. In: Y. Chauvin and D. E. Rumelhãrt (eds). Backpropagation: Theory, Architectures and Applications, Lawrence Erlbaum Publishers, Hillsdale, N. J., 1995, pp. 433-486.
-
(1995)
Backpropagation: Theory, Architectures and Applications
, pp. 433-486
-
-
Williams, R.J.1
Zipser, D.2
|