-
1
-
-
0000357105
-
-
R. Badii, G. Broggi, B. Derighetti, M. Ravani, S. Ciliberto, A. Politi, and M. A. Rubio, Phys. Rev. Lett. 60, 979 (1988).
-
(1988)
Phys. Rev. Lett.
, vol.60
, pp. 979
-
-
Badii, R.1
Broggi, G.2
Derighetti, B.3
Ravani, M.4
Ciliberto, S.5
Politi, A.6
Rubio, M.A.7
-
2
-
-
0013004827
-
-
P. Paoli, A. Politi, G. Broggi, M. Ravani, and R. Badii, Phys. Rev. Lett. 62, 2429 (1989); A. Chennaoui, J. Lieber, and H. G. Schuster, J. Stat. Phys. 59, 1311 (1990); F. Mitschke, Phys. Rev. A 41, 1169 (1990); S. H. Isabelle, A. V. Oppenheim, and G. W. Wornell, in ICASSP-92 Proceedings 5(IV) (IEEE, Piscataway, NJ, 1992), Vol. 5(IV), pp. 133-136.
-
(1989)
Phys. Rev. Lett.
, vol.62
, pp. 2429
-
-
Paoli, P.1
Politi, A.2
Broggi, G.3
Ravani, M.4
Badii, R.5
-
3
-
-
0001327893
-
-
P. Paoli, A. Politi, G. Broggi, M. Ravani, and R. Badii, Phys. Rev. Lett. 62, 2429 (1989); A. Chennaoui, J. Lieber, and H. G. Schuster, J. Stat. Phys. 59, 1311 (1990); F. Mitschke, Phys. Rev. A 41, 1169 (1990); S. H. Isabelle, A. V. Oppenheim, and G. W. Wornell, in ICASSP-92 Proceedings 5(IV) (IEEE, Piscataway, NJ, 1992), Vol. 5(IV), pp. 133-136.
-
(1990)
J. Stat. Phys.
, vol.59
, pp. 1311
-
-
Chennaoui, A.1
Lieber, J.2
Schuster, H.G.3
-
4
-
-
0000910223
-
-
P. Paoli, A. Politi, G. Broggi, M. Ravani, and R. Badii, Phys. Rev. Lett. 62, 2429 (1989); A. Chennaoui, J. Lieber, and H. G. Schuster, J. Stat. Phys. 59, 1311 (1990); F. Mitschke, Phys. Rev. A 41, 1169 (1990); S. H. Isabelle, A. V. Oppenheim, and G. W. Wornell, in ICASSP-92 Proceedings 5(IV) (IEEE, Piscataway, NJ, 1992), Vol. 5(IV), pp. 133-136.
-
(1990)
Phys. Rev. A
, vol.41
, pp. 1169
-
-
Mitschke, F.1
-
5
-
-
0242430612
-
-
IEEE, Piscataway, NJ
-
P. Paoli, A. Politi, G. Broggi, M. Ravani, and R. Badii, Phys. Rev. Lett. 62, 2429 (1989); A. Chennaoui, J. Lieber, and H. G. Schuster, J. Stat. Phys. 59, 1311 (1990); F. Mitschke, Phys. Rev. A 41, 1169 (1990); S. H. Isabelle, A. V. Oppenheim, and G. W. Wornell, in ICASSP-92 Proceedings 5(IV) (IEEE, Piscataway, NJ, 1992), Vol. 5(IV), pp. 133-136.
-
(1992)
ICASSP-92 Proceedings 5(IV)
, vol.5
, Issue.4
, pp. 133-136
-
-
Isabelle, S.H.1
Oppenheim, A.V.2
Wornell, G.W.3
-
6
-
-
0003451932
-
-
Functional Differential Equations and Approximations of Fixed Points, edited by H.-O. Peitgen and H.-O. Walter (Springer, Berlin)
-
J. L. Kaplan and J. A. Yorke, in Functional Differential Equations and Approximations of Fixed Points, Lecture Notes in Mathematics Vol. 730, edited by H.-O. Peitgen and H.-O. Walter (Springer, Berlin, 1979).
-
(1979)
Lecture Notes in Mathematics
, vol.730
-
-
Kaplan, J.L.1
Yorke, J.A.2
-
7
-
-
84995278039
-
-
J. Stark and M. E. Davis, IEE Digest 143, 1 (1994); K. M. Campbell and M. E. Davis, Nonlinearity 9, 801 (1996); B. Hunt, E. Ott, and J. A. Yorke, Phys. Rev. E 54, 4819 (1996); M. E. Davis, Physica D 101, 195 (1997).
-
(1994)
IEE Digest
, vol.143
, pp. 1
-
-
Stark, J.1
Davis, M.E.2
-
8
-
-
0000135328
-
-
J. Stark and M. E. Davis, IEE Digest 143, 1 (1994); K. M. Campbell and M. E. Davis, Nonlinearity 9, 801 (1996); B. Hunt, E. Ott, and J. A. Yorke, Phys. Rev. E 54, 4819 (1996); M. E. Davis, Physica D 101, 195 (1997).
-
(1996)
Nonlinearity
, vol.9
, pp. 801
-
-
Campbell, K.M.1
Davis, M.E.2
-
9
-
-
0001600430
-
-
J. Stark and M. E. Davis, IEE Digest 143, 1 (1994); K. M. Campbell and M. E. Davis, Nonlinearity 9, 801 (1996); B. Hunt, E. Ott, and J. A. Yorke, Phys. Rev. E 54, 4819 (1996); M. E. Davis, Physica D 101, 195 (1997).
-
(1996)
Phys. Rev. E
, vol.54
, pp. 4819
-
-
Hunt, B.1
Ott, E.2
Yorke, J.A.3
-
10
-
-
0000955695
-
-
J. Stark and M. E. Davis, IEE Digest 143, 1 (1994); K. M. Campbell and M. E. Davis, Nonlinearity 9, 801 (1996); B. Hunt, E. Ott, and J. A. Yorke, Phys. Rev. E 54, 4819 (1996); M. E. Davis, Physica D 101, 195 (1997).
-
(1997)
Physica D
, vol.101
, pp. 195
-
-
Davis, M.E.1
-
11
-
-
0012995124
-
-
L. M. Perora and T. L. Carroll, Chaos 6, 432 (1996); Int. J. Bifurcation Chaos Appl. Sci. Eng. 10, 875 (2000).
-
(1996)
Chaos
, vol.6
, pp. 432
-
-
Perora, L.M.1
Carroll, T.L.2
-
15
-
-
33744833457
-
-
N. Rulkov, M. Sushchik, L. S. Tsimring, and H. D. I. Abarbanel, Phys. Rev. E 51, 980 (1995); S. Schiff, P. So, T. Chang, R. E. Burke, and T. Sauer, ibid. 54, 6708 (1996); L. Kocarev and U. Parlitz, Phys. Rev. Lett. 76, 1816 (1996).
-
(1995)
Phys. Rev. E
, vol.51
, pp. 980
-
-
Rulkov, N.1
Sushchik, M.2
Tsimring, L.S.3
Abarbanel, H.D.I.4
-
16
-
-
0000528223
-
-
N. Rulkov, M. Sushchik, L. S. Tsimring, and H. D. I. Abarbanel, Phys. Rev. E 51, 980 (1995); S. Schiff, P. So, T. Chang, R. E. Burke, and T. Sauer, ibid. 54, 6708 (1996); L. Kocarev and U. Parlitz, Phys. Rev. Lett. 76, 1816 (1996).
-
(1996)
Phys. Rev. E
, vol.54
, pp. 6708
-
-
Schiff, S.1
So, P.2
Chang, T.3
Burke, R.E.4
Sauer, T.5
-
17
-
-
0000929946
-
-
N. Rulkov, M. Sushchik, L. S. Tsimring, and H. D. I. Abarbanel, Phys. Rev. E 51, 980 (1995); S. Schiff, P. So, T. Chang, R. E. Burke, and T. Sauer, ibid. 54, 6708 (1996); L. Kocarev and U. Parlitz, Phys. Rev. Lett. 76, 1816 (1996).
-
(1996)
Phys. Rev. Lett.
, vol.76
, pp. 1816
-
-
Kocarev, L.1
Parlitz, U.2
-
18
-
-
0002256723
-
-
The phenomenon of synchronous chaos was pointed out in: H. Fujisaka and T. Yamada, Prog. Theor. Phys. 69, 32 (1983); V. S. Afraimovich, N. N. Verichev, and M. I. Rabinovich, Radiophys. Quantum Electron. 29, 747 (1986). It was independently discovered and it was pointed out for the first time in the following paper that the phenomenon can have potential application in nonlinear digital communication: L. M. Pecora and T. L. Carroll, Phys. Rev. Lett. 64, 821 (1990). Since then, synchronization in chaotic systems has become one of the most active research areas in nonlinear dynamics. See, for example, W. L. Ditto and K. Showalter, Chaos (Focus Issue on Control and Synchronization of Chaos) 7, 509-687 (1997).
-
(1983)
Prog. Theor. Phys.
, vol.69
, pp. 32
-
-
Fujisaka, H.1
Yamada, T.2
-
19
-
-
0000863244
-
-
The phenomenon of synchronous chaos was pointed out in: H. Fujisaka and T. Yamada, Prog. Theor. Phys. 69, 32 (1983); V. S. Afraimovich, N. N. Verichev, and M. I. Rabinovich, Radiophys. Quantum Electron. 29, 747 (1986). It was independently discovered and it was pointed out for the first time in the following paper that the phenomenon can have potential application in nonlinear digital communication: L. M. Pecora and T. L. Carroll, Phys. Rev. Lett. 64, 821 (1990). Since then, synchronization in chaotic systems has become one of the most active research areas in nonlinear dynamics. See, for example, W. L. Ditto and K. Showalter, Chaos (Focus Issue on Control and Synchronization of Chaos) 7, 509-687 (1997).
-
(1986)
Radiophys. Quantum Electron.
, vol.29
, pp. 747
-
-
Afraimovich, V.S.1
Verichev, N.N.2
Rabinovich, M.I.3
-
20
-
-
0343689904
-
-
The phenomenon of synchronous chaos was pointed out in: H. Fujisaka and T. Yamada, Prog. Theor. Phys. 69, 32 (1983); V. S. Afraimovich, N. N. Verichev, and M. I. Rabinovich, Radiophys. Quantum Electron. 29, 747 (1986). It was independently discovered and it was pointed out for the first time in the following paper that the phenomenon can have potential application in nonlinear digital communication: L. M. Pecora and T. L. Carroll, Phys. Rev. Lett. 64, 821 (1990). Since then, synchronization in chaotic systems has become one of the most active research areas in nonlinear dynamics. See, for example, W. L. Ditto and K. Showalter, Chaos (Focus Issue on Control and Synchronization of Chaos) 7, 509-687 (1997).
-
(1990)
Phys. Rev. Lett.
, vol.64
, pp. 821
-
-
Pecora, L.M.1
Carroll, T.L.2
-
21
-
-
0012898018
-
-
The phenomenon of synchronous chaos was pointed out in: H. Fujisaka and T. Yamada, Prog. Theor. Phys. 69, 32 (1983); V. S. Afraimovich, N. N. Verichev, and M. I. Rabinovich, Radiophys. Quantum Electron. 29, 747 (1986). It was independently discovered and it was pointed out for the first time in the following paper that the phenomenon can have potential application in nonlinear digital communication: L. M. Pecora and T. L. Carroll, Phys. Rev. Lett. 64, 821 (1990). Since then, synchronization in chaotic systems has become one of the most active research areas in nonlinear dynamics. See, for example, W. L. Ditto and K. Showalter, Chaos (Focus Issue on Control and Synchronization of Chaos) 7, 509-687 (1997).
-
(1997)
Chaos (Focus Issue on Control and Synchronization of Chaos)
, vol.7
, pp. 509-687
-
-
Ditto, W.L.1
Showalter, K.2
-
22
-
-
12044253971
-
-
S. Hayes, C. Grebogi, and E. Ott, Phys. Rev. Lett. 70, 3031 (1993); S. Hayes, C. Grebogi, E. Ott, and A. Mark, ibid. 73, 1781 (1994); E. Bollt and M. Dolnik, Phys. Rev. E 55, 6404 (1997); E. Bollt, Y.-C. Lai, and C. Grebogi, Phys. Rev. Lett. 79, 3787 (1997); E. Bollt and Y.-C. Lai, Phys. Rev. E 58, 1724 (1998); Y.-C. Lai, E. Bollt, and C. Grebogi, Phys. Lett. A 255, 75 (1999); Y.-C. Lai, Int. J. Bifurcation Chaos Appl. Sci. Eng. 10, 787 (2000).
-
(1993)
Phys. Rev. Lett.
, vol.70
, pp. 3031
-
-
Hayes, S.1
Grebogi, C.2
Ott, E.3
-
23
-
-
12044256754
-
-
S. Hayes, C. Grebogi, and E. Ott, Phys. Rev. Lett. 70, 3031 (1993); S. Hayes, C. Grebogi, E. Ott, and A. Mark, ibid. 73, 1781 (1994); E. Bollt and M. Dolnik, Phys. Rev. E 55, 6404 (1997); E. Bollt, Y.-C. Lai, and C. Grebogi, Phys. Rev. Lett. 79, 3787 (1997); E. Bollt and Y.-C. Lai, Phys. Rev. E 58, 1724 (1998); Y.-C. Lai, E. Bollt, and C. Grebogi, Phys. Lett. A 255, 75 (1999); Y.-C. Lai, Int. J. Bifurcation Chaos Appl. Sci. Eng. 10, 787 (2000).
-
(1994)
Phys. Rev. Lett.
, vol.73
, pp. 1781
-
-
Hayes, S.1
Grebogi, C.2
Ott, E.3
Mark, A.4
-
24
-
-
0000687630
-
-
S. Hayes, C. Grebogi, and E. Ott, Phys. Rev. Lett. 70, 3031 (1993); S. Hayes, C. Grebogi, E. Ott, and A. Mark, ibid. 73, 1781 (1994); E. Bollt and M. Dolnik, Phys. Rev. E 55, 6404 (1997); E. Bollt, Y.-C. Lai, and C. Grebogi, Phys. Rev. Lett. 79, 3787 (1997); E. Bollt and Y.-C. Lai, Phys. Rev. E 58, 1724 (1998); Y.-C. Lai, E. Bollt, and C. Grebogi, Phys. Lett. A 255, 75 (1999); Y.-C. Lai, Int. J. Bifurcation Chaos Appl. Sci. Eng. 10, 787 (2000).
-
(1997)
Phys. Rev. E
, vol.55
, pp. 6404
-
-
Bollt, E.1
Dolnik, M.2
-
25
-
-
0031272384
-
-
S. Hayes, C. Grebogi, and E. Ott, Phys. Rev. Lett. 70, 3031 (1993); S. Hayes, C. Grebogi, E. Ott, and A. Mark, ibid. 73, 1781 (1994); E. Bollt and M. Dolnik, Phys. Rev. E 55, 6404 (1997); E. Bollt, Y.-C. Lai, and C. Grebogi, Phys. Rev. Lett. 79, 3787 (1997); E. Bollt and Y.-C. Lai, Phys. Rev. E 58, 1724 (1998); Y.-C. Lai, E. Bollt, and C. Grebogi, Phys. Lett. A 255, 75 (1999); Y.-C. Lai, Int. J. Bifurcation Chaos Appl. Sci. Eng. 10, 787 (2000).
-
(1997)
Phys. Rev. Lett.
, vol.79
, pp. 3787
-
-
Bollt, E.1
Lai, Y.-C.2
Grebogi, C.3
-
26
-
-
0001082245
-
-
S. Hayes, C. Grebogi, and E. Ott, Phys. Rev. Lett. 70, 3031 (1993); S. Hayes, C. Grebogi, E. Ott, and A. Mark, ibid. 73, 1781 (1994); E. Bollt and M. Dolnik, Phys. Rev. E 55, 6404 (1997); E. Bollt, Y.-C. Lai, and C. Grebogi, Phys. Rev. Lett. 79, 3787 (1997); E. Bollt and Y.-C. Lai, Phys. Rev. E 58, 1724 (1998); Y.-C. Lai, E. Bollt, and C. Grebogi, Phys. Lett. A 255, 75 (1999); Y.-C. Lai, Int. J. Bifurcation Chaos Appl. Sci. Eng. 10, 787 (2000).
-
(1998)
Phys. Rev. E
, vol.58
, pp. 1724
-
-
Bollt, E.1
Lai, Y.-C.2
-
27
-
-
0002898888
-
-
S. Hayes, C. Grebogi, and E. Ott, Phys. Rev. Lett. 70, 3031 (1993); S. Hayes, C. Grebogi, E. Ott, and A. Mark, ibid. 73, 1781 (1994); E. Bollt and M. Dolnik, Phys. Rev. E 55, 6404 (1997); E. Bollt, Y.-C. Lai, and C. Grebogi, Phys. Rev. Lett. 79, 3787 (1997); E. Bollt and Y.-C. Lai, Phys. Rev. E 58, 1724 (1998); Y.-C. Lai, E. Bollt, and C. Grebogi, Phys. Lett. A 255, 75 (1999); Y.-C. Lai, Int. J. Bifurcation Chaos Appl. Sci. Eng. 10, 787 (2000).
-
(1999)
Phys. Lett. A
, vol.255
, pp. 75
-
-
Lai, Y.-C.1
Bollt, E.2
Grebogi, C.3
-
28
-
-
0000064786
-
-
S. Hayes, C. Grebogi, and E. Ott, Phys. Rev. Lett. 70, 3031 (1993); S. Hayes, C. Grebogi, E. Ott, and A. Mark, ibid. 73, 1781 (1994); E. Bollt and M. Dolnik, Phys. Rev. E 55, 6404 (1997); E. Bollt, Y.-C. Lai, and C. Grebogi, Phys. Rev. Lett. 79, 3787 (1997); E. Bollt and Y.-C. Lai, Phys. Rev. E 58, 1724 (1998); Y.-C. Lai, E. Bollt, and C. Grebogi, Phys. Lett. A 255, 75 (1999); Y.-C. Lai, Int. J. Bifurcation Chaos Appl. Sci. Eng. 10, 787 (2000).
-
(2000)
Int. J. Bifurcation Chaos Appl. Sci. Eng.
, vol.10
, pp. 787
-
-
Lai, Y.-C.1
-
29
-
-
0034293961
-
-
M. S. Baptista, E. E. Macau, C. Grebogi, Y.-C. Lai, and E. Rosa, Phys. Rev. E 62, 4835 (2000).
-
(2000)
Phys. Rev. E
, vol.62
, pp. 4835
-
-
Baptista, M.S.1
Macau, E.E.2
Grebogi, C.3
Lai, Y.-C.4
Rosa, E.5
-
30
-
-
0033908182
-
-
C.-C. Chen and K. Yao, IEEE Commun. Lett. 4, 37 (2000); M. Sushchik, N. Rulkov, L. Lason, L. Tsimring, H. Abarbanel, K. Yao, and A. Volkovskii, ibid. 4, 128 (2000); C.-C. Chen and K. Yao, IEEE Trans. Circuits Syst., I: Fundam. Theory Appl. 47, 1663 (2000).
-
(2000)
IEEE Commun. Lett.
, vol.4
, pp. 37
-
-
Chen, C.-C.1
Yao, K.2
-
31
-
-
0000293625
-
-
C.-C. Chen and K. Yao, IEEE Commun. Lett. 4, 37 (2000); M. Sushchik, N. Rulkov, L. Lason, L. Tsimring, H. Abarbanel, K. Yao, and A. Volkovskii, ibid. 4, 128 (2000); C.-C. Chen and K. Yao, IEEE Trans. Circuits Syst., I: Fundam. Theory Appl. 47, 1663 (2000).
-
(2000)
IEEE Commun. Lett.
, vol.4
, pp. 128
-
-
Sushchik, M.1
Rulkov, N.2
Lason, L.3
Tsimring, L.4
Abarbanel, H.5
Yao, K.6
Volkovskii, A.7
-
32
-
-
0034472342
-
-
C.-C. Chen and K. Yao, IEEE Commun. Lett. 4, 37 (2000); M. Sushchik, N. Rulkov, L. Lason, L. Tsimring, H. Abarbanel, K. Yao, and A. Volkovskii, ibid. 4, 128 (2000); C.-C. Chen and K. Yao, IEEE Trans. Circuits Syst., I: Fundam. Theory Appl. 47, 1663 (2000).
-
(2000)
IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
, vol.47
, pp. 1663
-
-
Chen, C.-C.1
Yao, K.2
-
33
-
-
4243465861
-
-
Symbolic dynamics can be a powerful tool for analyzing chaotic time series. See, for example, H. Herzel, W. Ebeling, and A. O. Schmitt, Phys. Rev. E 50, 5061 (1994); J. Kurths, A. Voss, P. Saparin, and A. Witt, Chaos 5, 88 (1995); A. Neiman, B. Shulgin, V. Anishchenko, W. Ebeling, L. Schimansky-Geier, and J. Freund, Phys. Rev. Lett. 76, 4299 (1996); R. Engbert, C. Scheffczyk, R. Krampe, J. Kurths, and R. Kliegl, in Nonlinear Time Series Analysis of Physiological Data, edited by H. Kantz, J. Kurths, and G. Mayer-Kress (Springer, Heidelberg, 1998); M. Lehrman and A. B. Rechester, Phys. Rev. Lett. 78, 1 (1997); K. Mischaikow, M. Mrozek, J. Reiss, and A. Szymczak, ibid. 82, 1144 (1999); M. B. Kennel and A. I. Mees, Phys. Rev. E 61, 2563 (2000); R. Steuer, W. Ebeling, D. F. Russell, S. Bahar, A. Neiman, and F. Moss, ibid. 64, 061911 (2001); C. Bandt and B. Pompe, Phys. Rev. Lett. 88, 174102 (2002).
-
(1994)
Phys. Rev. E
, vol.50
, pp. 5061
-
-
Herzel, H.1
Ebeling, W.2
Schmitt, A.O.3
-
34
-
-
0003031097
-
-
Symbolic dynamics can be a powerful tool for analyzing chaotic time series. See, for example, H. Herzel, W. Ebeling, and A. O. Schmitt, Phys. Rev. E 50, 5061 (1994); J. Kurths, A. Voss, P. Saparin, and A. Witt, Chaos 5, 88 (1995); A. Neiman, B. Shulgin, V. Anishchenko, W. Ebeling, L. Schimansky-Geier, and J. Freund, Phys. Rev. Lett. 76, 4299 (1996); R. Engbert, C. Scheffczyk, R. Krampe, J. Kurths, and R. Kliegl, in Nonlinear Time Series Analysis of Physiological Data, edited by H. Kantz, J. Kurths, and G. Mayer-Kress (Springer, Heidelberg, 1998); M. Lehrman and A. B. Rechester, Phys. Rev. Lett. 78, 1 (1997); K. Mischaikow, M. Mrozek, J. Reiss, and A. Szymczak, ibid. 82, 1144 (1999); M. B. Kennel and A. I. Mees, Phys. Rev. E 61, 2563 (2000); R. Steuer, W. Ebeling, D. F. Russell, S. Bahar, A. Neiman, and F. Moss, ibid. 64, 061911 (2001); C. Bandt and B. Pompe, Phys. Rev. Lett. 88, 174102 (2002).
-
(1995)
Chaos
, vol.5
, pp. 88
-
-
Kurths, J.1
Voss, A.2
Saparin, P.3
Witt, A.4
-
35
-
-
0000747228
-
-
Symbolic dynamics can be a powerful tool for analyzing chaotic time series. See, for example, H. Herzel, W. Ebeling, and A. O. Schmitt, Phys. Rev. E 50, 5061 (1994); J. Kurths, A. Voss, P. Saparin, and A. Witt, Chaos 5, 88 (1995); A. Neiman, B. Shulgin, V. Anishchenko, W. Ebeling, L. Schimansky-Geier, and J. Freund, Phys. Rev. Lett. 76, 4299 (1996); R. Engbert, C. Scheffczyk, R. Krampe, J. Kurths, and R. Kliegl, in Nonlinear Time Series Analysis of Physiological Data, edited by H. Kantz, J. Kurths, and G. Mayer-Kress (Springer, Heidelberg, 1998); M. Lehrman and A. B. Rechester, Phys. Rev. Lett. 78, 1 (1997); K. Mischaikow, M. Mrozek, J. Reiss, and A. Szymczak, ibid. 82, 1144 (1999); M. B. Kennel and A. I. Mees, Phys. Rev. E 61, 2563 (2000); R. Steuer, W. Ebeling, D. F. Russell, S. Bahar, A. Neiman, and F. Moss, ibid. 64, 061911 (2001); C. Bandt and B. Pompe, Phys. Rev. Lett. 88, 174102 (2002).
-
(1996)
Phys. Rev. Lett.
, vol.76
, pp. 4299
-
-
Neiman, A.1
Shulgin, B.2
Anishchenko, V.3
Ebeling, W.4
Schimansky-Geier, L.5
Freund, J.6
-
36
-
-
4243465861
-
-
edited by H. Kantz, J. Kurths, and G. Mayer-Kress (Springer, Heidelberg)
-
Symbolic dynamics can be a powerful tool for analyzing chaotic time series. See, for example, H. Herzel, W. Ebeling, and A. O. Schmitt, Phys. Rev. E 50, 5061 (1994); J. Kurths, A. Voss, P. Saparin, and A. Witt, Chaos 5, 88 (1995); A. Neiman, B. Shulgin, V. Anishchenko, W. Ebeling, L. Schimansky-Geier, and J. Freund, Phys. Rev. Lett. 76, 4299 (1996); R. Engbert, C. Scheffczyk, R. Krampe, J. Kurths, and R. Kliegl, in Nonlinear Time Series Analysis of Physiological Data, edited by H. Kantz, J. Kurths, and G. Mayer-Kress (Springer, Heidelberg, 1998); M. Lehrman and A. B. Rechester, Phys. Rev. Lett. 78, 1 (1997); K. Mischaikow, M. Mrozek, J. Reiss, and A. Szymczak, ibid. 82, 1144 (1999); M. B. Kennel and A. I. Mees, Phys. Rev. E 61, 2563 (2000); R. Steuer, W. Ebeling, D. F. Russell, S. Bahar, A. Neiman, and F. Moss, ibid. 64, 061911 (2001); C. Bandt and B. Pompe, Phys. Rev. Lett. 88, 174102 (2002).
-
(1998)
Nonlinear Time Series Analysis of Physiological Data
-
-
Engbert, R.1
Scheffczyk, C.2
Krampe, R.3
Kurths, J.4
Kliegl, R.5
-
37
-
-
4243465861
-
-
Symbolic dynamics can be a powerful tool for analyzing chaotic time series. See, for example, H. Herzel, W. Ebeling, and A. O. Schmitt, Phys. Rev. E 50, 5061 (1994); J. Kurths, A. Voss, P. Saparin, and A. Witt, Chaos 5, 88 (1995); A. Neiman, B. Shulgin, V. Anishchenko, W. Ebeling, L. Schimansky-Geier, and J. Freund, Phys. Rev. Lett. 76, 4299 (1996); R. Engbert, C. Scheffczyk, R. Krampe, J. Kurths, and R. Kliegl, in Nonlinear Time Series Analysis of Physiological Data, edited by H. Kantz, J. Kurths, and G. Mayer-Kress (Springer, Heidelberg, 1998); M. Lehrman and A. B. Rechester, Phys. Rev. Lett. 78, 1 (1997); K. Mischaikow, M. Mrozek, J. Reiss, and A. Szymczak, ibid. 82, 1144 (1999); M. B. Kennel and A. I. Mees, Phys. Rev. E 61, 2563 (2000); R. Steuer, W. Ebeling, D. F. Russell, S. Bahar, A. Neiman, and F. Moss, ibid. 64, 061911 (2001); C. Bandt and B. Pompe, Phys. Rev. Lett. 88, 174102 (2002).
-
(1997)
Phys. Rev. Lett.
, vol.78
, pp. 1
-
-
Lehrman, M.1
Rechester, A.B.2
-
38
-
-
0000383657
-
-
Symbolic dynamics can be a powerful tool for analyzing chaotic time series. See, for example, H. Herzel, W. Ebeling, and A. O. Schmitt, Phys. Rev. E 50, 5061 (1994); J. Kurths, A. Voss, P. Saparin, and A. Witt, Chaos 5, 88 (1995); A. Neiman, B. Shulgin, V. Anishchenko, W. Ebeling, L. Schimansky-Geier, and J. Freund, Phys. Rev. Lett. 76, 4299 (1996); R. Engbert, C. Scheffczyk, R. Krampe, J. Kurths, and R. Kliegl, in Nonlinear Time Series Analysis of Physiological Data, edited by H. Kantz, J. Kurths, and G. Mayer-Kress (Springer, Heidelberg, 1998); M. Lehrman and A. B. Rechester, Phys. Rev. Lett. 78, 1 (1997); K. Mischaikow, M. Mrozek, J. Reiss, and A. Szymczak, ibid. 82, 1144 (1999); M. B. Kennel and A. I. Mees, Phys. Rev. E 61, 2563 (2000); R. Steuer, W. Ebeling, D. F. Russell, S. Bahar, A. Neiman, and F. Moss, ibid. 64, 061911 (2001); C. Bandt and B. Pompe, Phys. Rev. Lett. 88, 174102 (2002).
-
(1999)
Phys. Rev. Lett.
, vol.82
, pp. 1144
-
-
Mischaikow, K.1
Mrozek, M.2
Reiss, J.3
Szymczak, A.4
-
39
-
-
0000281130
-
-
Symbolic dynamics can be a powerful tool for analyzing chaotic time series. See, for example, H. Herzel, W. Ebeling, and A. O. Schmitt, Phys. Rev. E 50, 5061 (1994); J. Kurths, A. Voss, P. Saparin, and A. Witt, Chaos 5, 88 (1995); A. Neiman, B. Shulgin, V. Anishchenko, W. Ebeling, L. Schimansky-Geier, and J. Freund, Phys. Rev. Lett. 76, 4299 (1996); R. Engbert, C. Scheffczyk, R. Krampe, J. Kurths, and R. Kliegl, in Nonlinear Time Series Analysis of Physiological Data, edited by H. Kantz, J. Kurths, and G. Mayer-Kress (Springer, Heidelberg, 1998); M. Lehrman and A. B. Rechester, Phys. Rev. Lett. 78, 1 (1997); K. Mischaikow, M. Mrozek, J. Reiss, and A. Szymczak, ibid. 82, 1144 (1999); M. B. Kennel and A. I. Mees, Phys. Rev. E 61, 2563 (2000); R. Steuer, W. Ebeling, D. F. Russell, S. Bahar, A. Neiman, and F. Moss, ibid. 64, 061911 (2001); C. Bandt and B. Pompe, Phys. Rev. Lett. 88, 174102 (2002).
-
(2000)
Phys. Rev. E
, vol.61
, pp. 2563
-
-
Kennel, M.B.1
Mees, A.I.2
-
40
-
-
84983710581
-
-
Symbolic dynamics can be a powerful tool for analyzing chaotic time series. See, for example, H. Herzel, W. Ebeling, and A. O. Schmitt, Phys. Rev. E 50, 5061 (1994); J. Kurths, A. Voss, P. Saparin, and A. Witt, Chaos 5, 88 (1995); A. Neiman, B. Shulgin, V. Anishchenko, W. Ebeling, L. Schimansky-Geier, and J. Freund, Phys. Rev. Lett. 76, 4299 (1996); R. Engbert, C. Scheffczyk, R. Krampe, J. Kurths, and R. Kliegl, in Nonlinear Time Series Analysis of Physiological Data, edited by H. Kantz, J. Kurths, and G. Mayer-Kress (Springer, Heidelberg, 1998); M. Lehrman and A. B. Rechester, Phys. Rev. Lett. 78, 1 (1997); K. Mischaikow, M. Mrozek, J. Reiss, and A. Szymczak, ibid. 82, 1144 (1999); M. B. Kennel and A. I. Mees, Phys. Rev. E 61, 2563 (2000); R. Steuer, W. Ebeling, D. F. Russell, S. Bahar, A. Neiman, and F. Moss, ibid. 64, 061911 (2001); C. Bandt and B. Pompe, Phys. Rev. Lett. 88, 174102 (2002).
-
(2001)
Phys. Rev. E
, vol.64
, pp. 061911
-
-
Steuer, R.1
Ebeling, W.2
Russell, D.F.3
Bahar, S.4
Neiman, A.5
Moss, F.6
-
41
-
-
4243997063
-
-
Symbolic dynamics can be a powerful tool for analyzing chaotic time series. See, for example, H. Herzel, W. Ebeling, and A. O. Schmitt, Phys. Rev. E 50, 5061 (1994); J. Kurths, A. Voss, P. Saparin, and A. Witt, Chaos 5, 88 (1995); A. Neiman, B. Shulgin, V. Anishchenko, W. Ebeling, L. Schimansky-Geier, and J. Freund, Phys. Rev. Lett. 76, 4299 (1996); R. Engbert, C. Scheffczyk, R. Krampe, J. Kurths, and R. Kliegl, in Nonlinear Time Series Analysis of Physiological Data, edited by H. Kantz, J. Kurths, and G. Mayer-Kress (Springer, Heidelberg, 1998); M. Lehrman and A. B. Rechester, Phys. Rev. Lett. 78, 1 (1997); K. Mischaikow, M. Mrozek, J. Reiss, and A. Szymczak, ibid. 82, 1144 (1999); M. B. Kennel and A. I. Mees, Phys. Rev. E 61, 2563 (2000); R. Steuer, W. Ebeling, D. F. Russell, S. Bahar, A. Neiman, and F. Moss, ibid. 64, 061911 (2001); C. Bandt and B. Pompe, Phys. Rev. Lett. 88, 174102 (2002).
-
(2002)
Phys. Rev. Lett.
, vol.88
, pp. 174102
-
-
Bandt, C.1
Pompe, B.2
-
43
-
-
84958283599
-
-
note
-
(i)(P), always generates some sub-ω-algebra, but if it gives the full ω-algebra of all measurable sets F, then P is called generating (Ref. 31). This weaker notion says that the splitting needs only be up to measurable sets.
-
-
-
-
44
-
-
0039659690
-
-
P. Grassberger and H. Kantz, Phys. Lett. A 113, 235 (1985); P. Grassberger, H. Kantz, and U. Moenig, J. Phys. A 22, 5217 (1989); P. Cvitanovic, G. Gunaratne, and I. Procaccia, Phys. Rev. A 38, 1503 (1988); F. Giovannini and A. Politi, J. Phys. A 24, 1837 (1991); F. Christiansen and A. Politi, Phys. Rev. E 51, R3811 (1995); Nonlinearity 9, 1623 (1996).
-
(1985)
Phys. Lett. A
, vol.113
, pp. 235
-
-
Grassberger, P.1
Kantz, H.2
-
45
-
-
36149031123
-
-
P. Grassberger and H. Kantz, Phys. Lett. A 113, 235 (1985); P. Grassberger, H. Kantz, and U. Moenig, J. Phys. A 22, 5217 (1989); P. Cvitanovic, G. Gunaratne, and I. Procaccia, Phys. Rev. A 38, 1503 (1988); F. Giovannini and A. Politi, J. Phys. A 24, 1837 (1991); F. Christiansen and A. Politi, Phys. Rev. E 51, R3811 (1995); Nonlinearity 9, 1623 (1996).
-
(1989)
J. Phys. A
, vol.22
, pp. 5217
-
-
Grassberger, P.1
Kantz, H.2
Moenig, U.3
-
46
-
-
5544234625
-
-
P. Grassberger and H. Kantz, Phys. Lett. A 113, 235 (1985); P. Grassberger, H. Kantz, and U. Moenig, J. Phys. A 22, 5217 (1989); P. Cvitanovic, G. Gunaratne, and I. Procaccia, Phys. Rev. A 38, 1503 (1988); F. Giovannini and A. Politi, J. Phys. A 24, 1837 (1991); F. Christiansen and A. Politi, Phys. Rev. E 51, R3811 (1995); Nonlinearity 9, 1623 (1996).
-
(1988)
Phys. Rev. A
, vol.38
, pp. 1503
-
-
Cvitanovic, P.1
Gunaratne, G.2
Procaccia, I.3
-
47
-
-
0012899031
-
-
P. Grassberger and H. Kantz, Phys. Lett. A 113, 235 (1985); P. Grassberger, H. Kantz, and U. Moenig, J. Phys. A 22, 5217 (1989); P. Cvitanovic, G. Gunaratne, and I. Procaccia, Phys. Rev. A 38, 1503 (1988); F. Giovannini and A. Politi, J. Phys. A 24, 1837 (1991); F. Christiansen and A. Politi, Phys. Rev. E 51, R3811 (1995); Nonlinearity 9, 1623 (1996).
-
(1991)
J. Phys. A
, vol.24
, pp. 1837
-
-
Giovannini, F.1
Politi, A.2
-
48
-
-
24244472693
-
-
P. Grassberger and H. Kantz, Phys. Lett. A 113, 235 (1985); P. Grassberger, H. Kantz, and U. Moenig, J. Phys. A 22, 5217 (1989); P. Cvitanovic, G. Gunaratne, and I. Procaccia, Phys. Rev. A 38, 1503 (1988); F. Giovannini and A. Politi, J. Phys. A 24, 1837 (1991); F. Christiansen and A. Politi, Phys. Rev. E 51, R3811 (1995); Nonlinearity 9, 1623 (1996).
-
(1995)
Phys. Rev. E
, vol.51
-
-
Christiansen, F.1
Politi, A.2
-
49
-
-
0343040265
-
-
P. Grassberger and H. Kantz, Phys. Lett. A 113, 235 (1985); P. Grassberger, H. Kantz, and U. Moenig, J. Phys. A 22, 5217 (1989); P. Cvitanovic, G. Gunaratne, and I. Procaccia, Phys. Rev. A 38, 1503 (1988); F. Giovannini and A. Politi, J. Phys. A 24, 1837 (1991); F. Christiansen and A. Politi, Phys. Rev. E 51, R3811 (1995); Nonlinearity 9, 1623 (1996).
-
(1996)
Nonlinearity
, vol.9
, pp. 1623
-
-
-
50
-
-
0001167045
-
-
R. Davidchack, Y.-C. Lai, E. M. Bollt, and M. Dhamala, Phys. Rev. E 61, 1353 (2000).
-
(2000)
Phys. Rev. E
, vol.61
, pp. 1353
-
-
Davidchack, R.1
Lai, Y.-C.2
Bollt, E.M.3
Dhamala, M.4
-
53
-
-
84966245662
-
-
A. Boyarsky and P. Gora, Trans. Am. Math. Soc. 323, 39 (1991); N. Balmforth, E. Spiegel, and C. Tresser, Phys. Rev. Lett. 72, 80 (1994).
-
(1991)
Trans. Am. Math. Soc.
, vol.323
, pp. 39
-
-
Boyarsky, A.1
Gora, P.2
-
54
-
-
4243789953
-
-
A. Boyarsky and P. Gora, Trans. Am. Math. Soc. 323, 39 (1991); N. Balmforth, E. Spiegel, and C. Tresser, Phys. Rev. Lett. 72, 80 (1994).
-
(1994)
Phys. Rev. Lett.
, vol.72
, pp. 80
-
-
Balmforth, N.1
Spiegel, E.2
Tresser, C.3
-
55
-
-
0001228622
-
-
P. Collet, J. Crutchfield, and J. Eckmann, Commun. Math. Phys. 88, 257 (1983); L. Block, J. Keesling, S. Li, and K. Peterson, J. Stat. Phys. 55, 929 (1989).
-
(1983)
Commun. Math. Phys.
, vol.88
, pp. 257
-
-
Collet, P.1
Crutchfield, J.2
Eckmann, J.3
-
56
-
-
0000111109
-
-
P. Collet, J. Crutchfield, and J. Eckmann, Commun. Math. Phys. 88, 257 (1983); L. Block, J. Keesling, S. Li, and K. Peterson, J. Stat. Phys. 55, 929 (1989).
-
(1989)
J. Stat. Phys.
, vol.55
, pp. 929
-
-
Block, L.1
Keesling, J.2
Li, S.3
Peterson, K.4
-
57
-
-
0021710645
-
-
T. Matsumoto, IEEE Trans. Circuits Syst. CAS-31, 1055 (1984); R. Madan, Chua's Circuit: A Paradigm for Chaos (World Scientific, Singapore, 1993); L. O. Chua, C. W. Wu, A. Huang, and G.-Q. Zhong, IEEE Trans. Circuits Syst., I: Fundam. Theory Appl. 40, 732 (1993); L. O. Chua, Int. J. Cir. Theory Applic. 22, 279 (1994).
-
(1984)
IEEE Trans. Circuits Syst.
, vol.CAS-31
, pp. 1055
-
-
Matsumoto, T.1
-
58
-
-
0021710645
-
-
World Scientific, Singapore
-
T. Matsumoto, IEEE Trans. Circuits Syst. CAS-31, 1055 (1984); R. Madan, Chua's Circuit: A Paradigm for Chaos (World Scientific, Singapore, 1993); L. O. Chua, C. W. Wu, A. Huang, and G.-Q. Zhong, IEEE Trans. Circuits Syst., I: Fundam. Theory Appl. 40, 732 (1993); L. O. Chua, Int. J. Cir. Theory Applic. 22, 279 (1994).
-
(1993)
Chua's Circuit: A Paradigm for Chaos
-
-
Madan, R.1
-
59
-
-
0027681883
-
-
T. Matsumoto, IEEE Trans. Circuits Syst. CAS-31, 1055 (1984); R. Madan, Chua's Circuit: A Paradigm for Chaos (World Scientific, Singapore, 1993); L. O. Chua, C. W. Wu, A. Huang, and G.-Q. Zhong, IEEE Trans. Circuits Syst., I: Fundam. Theory Appl. 40, 732 (1993); L. O. Chua, Int. J. Cir. Theory Applic. 22, 279 (1994).
-
(1993)
IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
, vol.40
, pp. 732
-
-
Chua, L.O.1
Wu, C.W.2
Huang, A.3
Zhong, G.-Q.4
-
60
-
-
0028465976
-
-
T. Matsumoto, IEEE Trans. Circuits Syst. CAS-31, 1055 (1984); R. Madan, Chua's Circuit: A Paradigm for Chaos (World Scientific, Singapore, 1993); L. O. Chua, C. W. Wu, A. Huang, and G.-Q. Zhong, IEEE Trans. Circuits Syst., I: Fundam. Theory Appl. 40, 732 (1993); L. O. Chua, Int. J. Cir. Theory Applic. 22, 279 (1994).
-
(1994)
Int. J. Cir. Theory Applic.
, vol.22
, pp. 279
-
-
Chua, L.O.1
-
63
-
-
0004199580
-
-
Prentice-Hall, Englewood Cliffs
-
A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals and Systems, 2nd ed. (Prentice-Hall, Englewood Cliffs, 1997).
-
(1997)
Signals and Systems, 2nd Ed.
-
-
Oppenheim, A.V.1
Willsky, A.S.2
Nawab, S.H.3
-
64
-
-
0034300534
-
-
E. M. Bollt, T. Stanford, Y.-C. Lai, and K. Źyczkowski, Phys. Rev. Lett. 85, 3524 (2000).
-
(2000)
Phys. Rev. Lett.
, vol.85
, pp. 3524
-
-
Bollt, E.M.1
Stanford, T.2
Lai, Y.-C.3
Źyczkowski, K.4
-
65
-
-
0035877078
-
-
E. M. Bollt, T. Stanford, Y.-C. Lai, and K. Źyczkowski, Physica D 154, 259 (2001).
-
(2001)
Physica D
, vol.154
, pp. 259
-
-
Bollt, E.M.1
Stanford, T.2
Lai, Y.-C.3
Źyczkowski, K.4
-
67
-
-
84958283600
-
-
MAXIM Integrated Products, 1995
-
MAXIM Integrated Products, 1995.
-
-
-
-
68
-
-
0003568096
-
-
Birkhäuser, Boston
-
The concept of generating partition is often confused with the related "Markov partition," whose existence implies that, in the case of an interval map, end points of the partition map to end points (each partition interval is a homeomorphism onto a connected union of intervals from metric space M, i.e., intervals stretch exactly onto unions of intervals [P. Góra and A. Boyarsky, Laws of Chaos, Invariant Measures and Dynamical Systems in One Dimension (Birkhäuser, Boston, 1997)], and which can be appropriately defined for other classes of maps, such as axiom A [R. Bowen, Am. J. Math. 92, 725 (1970); Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms (Springer, Berlin, 1975)].
-
(1997)
Laws of Chaos, Invariant Measures and Dynamical Systems in One Dimension
-
-
Góra, P.1
Boyarsky, A.2
-
69
-
-
0001300739
-
-
The concept of generating partition is often confused with the related "Markov partition," whose existence implies that, in the case of an interval map, end points of the partition map to end points (each partition interval is a homeomorphism onto a connected union of intervals from metric space M, i.e., intervals stretch exactly onto unions of intervals [P. Góra and A. Boyarsky, Laws of Chaos, Invariant Measures and Dynamical Systems in One Dimension (Birkhäuser, Boston, 1997)], and which can be appropriately defined for other classes of maps, such as axiom A [R. Bowen, Am. J. Math. 92, 725 (1970); Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms (Springer, Berlin, 1975)].
-
(1970)
Am. J. Math.
, vol.92
, pp. 725
-
-
Bowen, R.1
-
70
-
-
0003823726
-
-
Springer, Berlin
-
The concept of generating partition is often confused with the related "Markov partition," whose existence implies that, in the case of an interval map, end points of the partition map to end points (each partition interval is a homeomorphism onto a connected union of intervals from metric space M, i.e., intervals stretch exactly onto unions of intervals [P. Góra and A. Boyarsky, Laws of Chaos, Invariant Measures and Dynamical Systems in One Dimension (Birkhäuser, Boston, 1997)], and which can be appropriately defined for other classes of maps, such as axiom A [R. Bowen, Am. J. Math. 92, 725 (1970); Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms (Springer, Berlin, 1975)].
-
(1975)
Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms
-
-
|