메뉴 건너뛰기




Volumn 54, Issue 5, 1996, Pages 4819-4823

Fractal dimensions of chaotic saddles of dynamical systems

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0001600430     PISSN: 1063651X     EISSN: None     Source Type: Journal    
DOI: 10.1103/physreve.54.4819     Document Type: Article
Times cited : (54)

References (25)
  • 1
    • 0001640825 scopus 로고
    • Functional Differential Equations and Approximations of Fixed Points, edited by H.-O. Peitgen and H.-O. Walter, Springer, Berlin, For further discussion and development see
    • (a) J. L. Kaplan and J. A. Yorke, in Functional Differential Equations and Approximations of Fixed Points, edited by H.-O. Peitgen and H.-O. Walter, Lecture Notes in Mathematics Vol. 730 (Springer, Berlin, 1979), p. 204. For further discussion and development see
    • (1979) Lecture Notes in Mathematics , vol.730 , pp. 204
    • Kaplan, J.L.1    Yorke, J.A.2
  • 5
    • 5544289634 scopus 로고    scopus 로고
    • The Kaplan-Yorke formula for the dimension is known to fail in special cases. However, these cases are claimed to be atypical in that arbitrary small changes of the map restore agreement (e.g., see [1(c)])
    • The Kaplan-Yorke formula for the dimension is known to fail in special cases. However, these cases are claimed to be atypical in that arbitrary small changes of the map restore agreement (e.g., see [1(c)]).
  • 8
    • 0001048955 scopus 로고
    • F. Ledrappier and L.-S. Young, Ann. Math. 122, 509 (1985); 122, 540 (1985). A brief discussion of the partial dimension formalism is given by J.-P. Eckmann and D. Ruelle, Rev. Mod. Phys. 57, 617 (1985).
    • (1985) Ann. Math. , vol.122 , pp. 509
    • Ledrappier, F.1    Young, L.-S.2
  • 9
    • 0001048955 scopus 로고
    • F. Ledrappier and L.-S. Young, Ann. Math. 122, 509 (1985); 122, 540 (1985). A brief discussion of the partial dimension formalism is given by J.-P. Eckmann and D. Ruelle, Rev. Mod. Phys. 57, 617 (1985).
    • (1985) Ann. Math. , vol.122 , pp. 540
  • 10
    • 35949018382 scopus 로고
    • F. Ledrappier and L.-S. Young, Ann. Math. 122, 509 (1985); 122, 540 (1985). A brief discussion of the partial dimension formalism is given by J.-P. Eckmann and D. Ruelle, Rev. Mod. Phys. 57, 617 (1985).
    • (1985) Rev. Mod. Phys. , vol.57 , pp. 617
    • Eckmann, J.-P.1    Ruelle, D.2
  • 16
    • 0000601315 scopus 로고
    • For work making use of the theory of chaotic scattering to treat tracer convection by a two-dimensional Lagrangian chaotic fluid flow see the papers by C. Jung and E. Ziemniak, J. Phys. A 25, 3929 (1992); C. Jung, T. Tél, and E. Ziemniak, CHAOS 3, 555 (1993); E. Ziemniak, C. Jung, and T. Tél, Physica D 76, 123 (1994); A. Péntek, Z. Toroczkai, T. Tél, C. Grebogi, and J. A. Yorke, Phys. Rev. E 51, 4076 (1995).
    • (1992) J. Phys. A , vol.25 , pp. 3929
    • Jung, C.1    Ziemniak, E.2
  • 17
    • 0001154059 scopus 로고
    • For work making use of the theory of chaotic scattering to treat tracer convection by a two-dimensional Lagrangian chaotic fluid flow see the papers by C. Jung and E. Ziemniak, J. Phys. A 25, 3929 (1992); C. Jung, T. Tél, and E. Ziemniak, CHAOS 3, 555 (1993); E. Ziemniak, C. Jung, and T. Tél, Physica D 76, 123 (1994); A. Péntek, Z. Toroczkai, T. Tél, C. Grebogi, and J. A. Yorke, Phys. Rev. E 51, 4076 (1995).
    • (1993) CHAOS , vol.3 , pp. 555
    • Jung, C.1    Tél, T.2    Ziemniak, E.3
  • 18
    • 43949161715 scopus 로고
    • For work making use of the theory of chaotic scattering to treat tracer convection by a two-dimensional Lagrangian chaotic fluid flow see the papers by C. Jung and E. Ziemniak, J. Phys. A 25, 3929 (1992); C. Jung, T. Tél, and E. Ziemniak, CHAOS 3, 555 (1993); E. Ziemniak, C. Jung, and T. Tél, Physica D 76, 123 (1994); A. Péntek, Z. Toroczkai, T. Tél, C. Grebogi, and J. A. Yorke, Phys. Rev. E 51, 4076 (1995).
    • (1994) Physica D , vol.76 , pp. 123
    • Ziemniak, E.1    Jung, C.2    Tél, T.3
  • 19
    • 0001587809 scopus 로고
    • For work making use of the theory of chaotic scattering to treat tracer convection by a two-dimensional Lagrangian chaotic fluid flow see the papers by C. Jung and E. Ziemniak, J. Phys. A 25, 3929 (1992); C. Jung, T. Tél, and E. Ziemniak, CHAOS 3, 555 (1993); E. Ziemniak, C. Jung, and T. Tél, Physica D 76, 123 (1994); A. Péntek, Z. Toroczkai, T. Tél, C. Grebogi, and J. A. Yorke, Phys. Rev. E 51, 4076 (1995).
    • (1995) Phys. Rev. E , vol.51 , pp. 4076
    • Péntek, A.1    Toroczkai, Z.2    Tél, T.3    Grebogi, C.4    Yorke, J.A.5
  • 20
    • 0003582543 scopus 로고
    • Cambridge University Press, Cambridge
    • The arguments in this section generalize those of Refs. [8,9]. See also E. Ott, Chaos in Dynamical Systems (Cambridge University Press, Cambridge, 1993), pp. 176-179.
    • (1993) Chaos in Dynamical Systems , pp. 176-179
    • Ott, E.1
  • 21
    • 5544265748 scopus 로고    scopus 로고
    • note
    • This argument (as in the Kaplan-Yorke argument) might superficially appear to yield the box-counting dimension rather than the information dimension. We note, however, that the information dimension may be viewed as the box-counting dimension of the minimal set covering most of the measure (e.g., see [1b]). Furthermore, the expansions and contractions specified by the Lyapunov exponents are only valid for typical orbits (i.e., for those orbits on the attractor that have most of the measure).
  • 22
    • 5544248264 scopus 로고    scopus 로고
    • Equation (17) can also be obtained from the partial dimension treatment of Ref. [5] by maximizing D over the possible values of the partial dimensions
    • Equation (17) can also be obtained from the partial dimension treatment of Ref. [5] by maximizing D over the possible values of the partial dimensions.
  • 23
    • 0041034894 scopus 로고
    • see in particular the Appendix
    • E. Ott, T. Sauer, and J. A. Yorke, Phys. Rev. A 39, 4212 (1989) (see in particular the Appendix).
    • (1989) Phys. Rev. A , vol.39 , pp. 4212
    • Ott, E.1    Sauer, T.2    Yorke, J.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.