-
1
-
-
0021979912
-
Organization of glycosphingolipids in bilayers and plasma membranes of mammalian cells
-
Thompson T., Tillack T. Organization of glycosphingolipids in bilayers and plasma membranes of mammalian cells. Annu Rev Biophys Biophys Chem. 14:1985;361-386.
-
(1985)
Annu Rev Biophys Biophys Chem
, vol.14
, pp. 361-386
-
-
Thompson, T.1
Tillack, T.2
-
3
-
-
0030949124
-
Functional rafts in cell membranes
-
Simons K., Ikonen E. Functional rafts in cell membranes. Nature. 387:1997;569-572.
-
(1997)
Nature
, vol.387
, pp. 569-572
-
-
Simons, K.1
Ikonen, E.2
-
4
-
-
0032541423
-
Cholesterol-dependent retention of GPI-anchored proteins in endosomes
-
Mayor S., Sabharanjak S., Maxfield F. Cholesterol-dependent retention of GPI-anchored proteins in endosomes. EMBO J. 17:1998;4626-4638.
-
(1998)
EMBO J
, vol.17
, pp. 4626-4638
-
-
Mayor, S.1
Sabharanjak, S.2
Maxfield, F.3
-
5
-
-
0035490884
-
The endocytic pathway: A mosaic of domains
-
Gruenberg J. The endocytic pathway: a mosaic of domains. Nat Rev Mol Cell Biol. 2:2001;721-730.
-
(2001)
Nat Rev Mol Cell Biol
, vol.2
, pp. 721-730
-
-
Gruenberg, J.1
-
6
-
-
0035951401
-
Protein sorting upon exit from the endoplasmic reticulum
-
Muniz M., Morsomme P., Riezman H. Protein sorting upon exit from the endoplasmic reticulum. Cell. 104:2001;313-320.
-
(2001)
Cell
, vol.104
, pp. 313-320
-
-
Muniz, M.1
Morsomme, P.2
Riezman, H.3
-
7
-
-
0034625373
-
Structure and function of sphingolipid- and cholesterol-rich membrane rafts
-
Brown D., London E. Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem. 275:2000;17221-17224.
-
(2000)
J Biol Chem
, vol.275
, pp. 17221-17224
-
-
Brown, D.1
London, E.2
-
8
-
-
0035845497
-
Partitioning of Thy-1, GM1, and cross-linked phospholipid analogs into lipid rafts reconstituted in supported model membrane monolayers
-
Dietrich C., Volovyk Z., Levi M., Thompson N., Jacobson K. Partitioning of Thy-1, GM1, and cross-linked phospholipid analogs into lipid rafts reconstituted in supported model membrane monolayers. Proc Natl Acad Sci USA. 98:2001;10642-10647. Many features of membrane microdomains in cells were demonstrated to occur in model membranes, opening the way to more detailed biophysical studies. These included effects of cholesterol depletion and the enhanced recruitment of some lipids to rafts upon crosslinking.
-
(2001)
Proc Natl Acad Sci USA
, vol.98
, pp. 10642-10647
-
-
Dietrich, C.1
Volovyk, Z.2
Levi, M.3
Thompson, N.4
Jacobson, K.5
-
9
-
-
0035114678
-
Lipid rafts reconstituted in model membranes
-
Dietrich C., Bagatolli L., Volovyk Z., Thompson N., Levi M., Jacobson K., Gratton E. Lipid rafts reconstituted in model membranes. Biophys J. 80:2001;1417-1428.
-
(2001)
Biophys J
, vol.80
, pp. 1417-1428
-
-
Dietrich, C.1
Bagatolli, L.2
Volovyk, Z.3
Thompson, N.4
Levi, M.5
Jacobson, K.6
Gratton, E.7
-
10
-
-
0033587719
-
Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy
-
Korlach J., Schwille P., Webb W., Feigenson G. Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy. Proc Natl Acad Sci USA. 96:1999;8461-8466.
-
(1999)
Proc Natl Acad Sci USA
, vol.96
, pp. 8461-8466
-
-
Korlach, J.1
Schwille, P.2
Webb, W.3
Feigenson, G.4
-
11
-
-
0035016931
-
Ternary phase diagram of dipalmitoyl-PC/dilauroyl-PC/cholesterol: Nanoscopic domain formation driven by cholesterol
-
Feigenson G., Buboltz J. Ternary phase diagram of dipalmitoyl-PC/dilauroyl-PC/cholesterol: nanoscopic domain formation driven by cholesterol. Biophys J. 80:2001;2775-2788. This paper provides a fairly detailed examination of the phase behavior of this three-component system. There are some intriguing similarities to observations in cells [13•] .
-
(2001)
Biophys J
, vol.80
, pp. 2775-2788
-
-
Feigenson, G.1
Buboltz, J.2
-
12
-
-
0034763783
-
Cholesterol does not induce segregation of liquid-ordered domains in bilayers modeling the inner leaflet of the plasma membrane
-
Wang T., Silvius J. Cholesterol does not induce segregation of liquid-ordered domains in bilayers modeling the inner leaflet of the plasma membrane. Biophys J. 81:2001;2762-2773.
-
(2001)
Biophys J
, vol.81
, pp. 2762-2773
-
-
Wang, T.1
Silvius, J.2
-
13
-
-
0035818530
-
Cholesterol modulation induces large scale domain segregation in living cell membranes
-
Hao M., Mukherjee S., Maxfield F. Cholesterol modulation induces large scale domain segregation in living cell membranes. Proc Natl Acad Sci USA. 98:2001;13072-13077. The behavior of fluorescent lipid probes with preferences for ordered or disordered domains is examined. Effects of cholesterol depletion differ from expectations of a conventional raft model, but are strikingly similar to observations in a three-component model system [11•] .
-
(2001)
Proc Natl Acad Sci USA
, vol.98
, pp. 13072-13077
-
-
Hao, M.1
Mukherjee, S.2
Maxfield, F.3
-
14
-
-
0032552054
-
GPI-anchored proteins are organized in submicron domains at the cell surface
-
Varma R., Mayor S. GPI-anchored proteins are organized in submicron domains at the cell surface. Nature. 394:1998;798-801.
-
(1998)
Nature
, vol.394
, pp. 798-801
-
-
Varma, R.1
Mayor, S.2
-
15
-
-
0034075971
-
High-resolution FRET microscopy of cholera toxin B-subunit and GPI-anchored proteins in cell plasma membranes
-
Kenworthy A., Petranova N., Edidin M. High-resolution FRET microscopy of cholera toxin B-subunit and GPI-anchored proteins in cell plasma membranes. Mol Biol Cell. 11:2000;1645-1655.
-
(2000)
Mol Biol Cell
, vol.11
, pp. 1645-1655
-
-
Kenworthy, A.1
Petranova, N.2
Edidin, M.3
-
16
-
-
0036214457
-
Relationship of lipid rafts to transient confinement zones detected by single particle tracking
-
Dietrich C.Y.B., Fujiwara T., Kusumi A., Jacobson K. Relationship of lipid rafts to transient confinement zones detected by single particle tracking. Biophys J. 82:2002;274-284. An extension of earlier single-particle tracking studies. Additional lipid probes were included and enabled investigation in the millisecond time range, which showed at least two types of transient confinement.
-
(2002)
Biophys J
, vol.82
, pp. 274-284
-
-
Dietrich, C.Y.B.1
Fujiwara, T.2
Kusumi, A.3
Jacobson, K.4
-
17
-
-
0034611005
-
Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells
-
Pralle A., Keller P., Florin E., Simons K., Horber J. Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J Cell Biol. 148:2000;997-1008.
-
(2000)
J Cell Biol
, vol.148
, pp. 997-1008
-
-
Pralle, A.1
Keller, P.2
Florin, E.3
Simons, K.4
Horber, J.5
-
18
-
-
0029044628
-
Insolubility and redistribution of GPI-anchored proteins at the cell surface after detergent treatment
-
Mayor S., Maxfield F. Insolubility and redistribution of GPI-anchored proteins at the cell surface after detergent treatment. Mol Biol Cell. 6:1995;929-944.
-
(1995)
Mol Biol Cell
, vol.6
, pp. 929-944
-
-
Mayor, S.1
Maxfield, F.2
-
19
-
-
0035899985
-
Fluorescence anisotropy measurements of lipid order in plasma membranes and lipid rafts from RBL-2H3 mast cells
-
Gidwani A., Holowka D., Baird B. Fluorescence anisotropy measurements of lipid order in plasma membranes and lipid rafts from RBL-2H3 mast cells. Biochemistry. 40:2001;12422-12429.
-
(2001)
Biochemistry
, vol.40
, pp. 12422-12429
-
-
Gidwani, A.1
Holowka, D.2
Baird, B.3
-
20
-
-
0030863490
-
Transient confinement of a glycosylphosphatidylinositol-anchored protein in the plasma membrane
-
Sheets E., Lee G., Simson R., Jacobson K. Transient confinement of a glycosylphosphatidylinositol-anchored protein in the plasma membrane. Biochemistry. 36:1997;12449-12458.
-
(1997)
Biochemistry
, vol.36
, pp. 12449-12458
-
-
Sheets, E.1
Lee, G.2
Simson, R.3
Jacobson, K.4
-
21
-
-
0034069892
-
Interactions between FcεRI and lipid raft components are regulated by the actin cytoskeleton
-
Holowka D., Sheets E., Baird B. Interactions between FcεRI and lipid raft components are regulated by the actin cytoskeleton. J Cell Sci. 113:2000;1009-1019.
-
(2000)
J Cell Sci
, vol.113
, pp. 1009-1019
-
-
Holowka, D.1
Sheets, E.2
Baird, B.3
-
22
-
-
0035879095
-
Glycolipid-enriched membrane domains are assembled into membrane patches by associating with the actin cytoskeleton
-
Rodgers W., Zavzavadjian J. Glycolipid-enriched membrane domains are assembled into membrane patches by associating with the actin cytoskeleton. Exp Cell Res. 267:2001;173-183.
-
(2001)
Exp Cell Res
, vol.267
, pp. 173-183
-
-
Rodgers, W.1
Zavzavadjian, J.2
-
23
-
-
0033598190
-
Analysis of CD44-containing lipid rafts: Recruitment of annexin II and stabilization by the actin cytoskeleton
-
Oliferenko S., Paiha K., Harder T., Gerke V., Schwarzler C., Schwarz H., Beug H., Gunthert U., Huber L. Analysis of CD44-containing lipid rafts: recruitment of annexin II and stabilization by the actin cytoskeleton. J Cell Biol. 146:1999;843-854.
-
(1999)
J Cell Biol
, vol.146
, pp. 843-854
-
-
Oliferenko, S.1
Paiha, K.2
Harder, T.3
Gerke, V.4
Schwarzler, C.5
Schwarz, H.6
Beug, H.7
Gunthert, U.8
Huber, L.9
-
24
-
-
0028922840
-
Transmembrane domain of CD44 is required for its detergent insolubility in fibroblasts
-
Perschl A., Lesley J., English N., Hyman R., Trowbridge I. Transmembrane domain of CD44 is required for its detergent insolubility in fibroblasts. J Cell Sci. 108:1995;1033-1041.
-
(1995)
J Cell Sci
, vol.108
, pp. 1033-1041
-
-
Perschl, A.1
Lesley, J.2
English, N.3
Hyman, R.4
Trowbridge, I.5
-
25
-
-
0032559637
-
Ezrin/radixin/moesin (ERM) proteins bind to a positively charged amino acid cluster in the juxta-membrane cytoplasmic domain of CD44, CD43, and ICAM-2
-
Yonemura S., Hirao M., Doi Y., Takahashi N., Kondo T., Tsukita S., Tsukita S. Ezrin/radixin/moesin (ERM) proteins bind to a positively charged amino acid cluster in the juxta-membrane cytoplasmic domain of CD44, CD43, and ICAM-2. J Cell Biol. 140:1998;885-895.
-
(1998)
J Cell Biol
, vol.140
, pp. 885-895
-
-
Yonemura, S.1
Hirao, M.2
Doi, Y.3
Takahashi, N.4
Kondo, T.5
Tsukita, S.6
Tsukita, S.7
-
26
-
-
0034724536
-
Structure of the ERM protein moesin reveals the FERM domain fold masked by an extended actin binding tail domain
-
Pearson M., Reczek D., Bretscher A., Karplus P. Structure of the ERM protein moesin reveals the FERM domain fold masked by an extended actin binding tail domain. Cell. 101:2000;259-270.
-
(2000)
Cell
, vol.101
, pp. 259-270
-
-
Pearson, M.1
Reczek, D.2
Bretscher, A.3
Karplus, P.4
-
27
-
-
0035200201
-
Cytoskeleton-dependent membrane domain segregation during neutrophil polarization
-
Seveau S., Eddy R., Maxfield F., Pierini L. Cytoskeleton-dependent membrane domain segregation during neutrophil polarization. Mol Biol Cell. 12:2001;3550-3562. As neutrophils polarize, they form a large, detergent-resistant domain at the rear that coincides with the distribution of raft-preferring transmembrane domains.
-
(2001)
Mol Biol Cell
, vol.12
, pp. 3550-3562
-
-
Seveau, S.1
Eddy, R.2
Maxfield, F.3
Pierini, L.4
-
28
-
-
0035859925
-
Segregation of leading-edge and uropod components into specific lipid rafts during T cell polarization
-
Gómez-Moutón C., Abad J., Mira E., Lacalle R., Gallardo E., Jiménez Baranda S., Illa I., Bernad A., Mañes S., Martínez-A C. Segregation of leading-edge and uropod components into specific lipid rafts during T cell polarization. Proc Natl Acad Sci USA. 98:2001;9642-9647. Two different types of rafts were seen in polarizing T cells, as seen by enrichment of different gangliosides at the front and the rear of cells.
-
(2001)
Proc Natl Acad Sci USA
, vol.98
, pp. 9642-9647
-
-
Gómez-Moutón, C.1
Abad, J.2
Mira, E.3
Lacalle, R.4
Gallardo, E.5
Jiménez Baranda, S.6
Illa, I.7
Bernad, A.8
Mañes, S.9
Martínez-A, C.10
-
29
-
-
0035859804
-
Flotillas of lipid rafts fore and aft
-
Pierini L., Maxfield F. Flotillas of lipid rafts fore and aft. Proc Natl Acad Sci USA. 98:2001;9471-9473.
-
(2001)
Proc Natl Acad Sci USA
, vol.98
, pp. 9471-9473
-
-
Pierini, L.1
Maxfield, F.2
-
30
-
-
0034990659
-
Caveolae and signaling
-
Fielding C. Caveolae and signaling. Curr Opin Lipidol. 12:2001;281-287.
-
(2001)
Curr Opin Lipidol
, vol.12
, pp. 281-287
-
-
Fielding, C.1
-
31
-
-
0035964954
-
Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice
-
Drab M., Verkade P., Elger M., Kasper M., Lohn M., Lauterbach B., Menne J., Lindschau C., Mende F., Luft F., et al. Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science. 293:2001;2449-2452. The precise role of caveolae has been a subject of much investigation and controversy. Caveolin-1 knockout mice, which also show a lack of caveolin-2, will be an invaluable resource for determining the role of caveolae in various tissues.
-
(2001)
Science
, vol.293
, pp. 2449-2452
-
-
Drab, M.1
Verkade, P.2
Elger, M.3
Kasper, M.4
Lohn, M.5
Lauterbach, B.6
Menne, J.7
Lindschau, C.8
Mende, F.9
Luft, F.10
-
32
-
-
0035851197
-
Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities
-
Razani B., Engelman J., Wang X., Schubert W., Zhang X., Marks C., Macaluso F., Russell R., Li M., Pestell R., et al. Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J Biol Chem. 276:2001;38121-38138. See annotation Drab et al. (2001) [31••] .
-
(2001)
J Biol Chem
, vol.276
, pp. 38121-38138
-
-
Razani, B.1
Engelman, J.2
Wang, X.3
Schubert, W.4
Zhang, X.5
Marks, C.6
Macaluso, F.7
Russell, R.8
Li, M.9
Pestell, R.10
-
33
-
-
0036151510
-
Caveolae are highly immobile plasma membrane microdomains, which are not involved in constitutive endocytic trafficking
-
Thomsen P., Roepstorff K., Stahlhut M., van Deurs B. Caveolae are highly immobile plasma membrane microdomains, which are not involved in constitutive endocytic trafficking. Mol Biol Cell. 13:2002;238-250. This careful study shows that under normal cell-culture conditions, plasma membrane caveolae are not significantly involved in endocytosis in HeLa, A-431 or MDCK cells.
-
(2002)
Mol Biol Cell
, vol.13
, pp. 238-250
-
-
Thomsen, P.1
Roepstorff, K.2
Stahlhut, M.3
Van Deurs, B.4
-
34
-
-
0035017308
-
Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER
-
Pelkmans L., Kartenbeck J., Helenius A. Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat Cell Biol. 3:2001;473-483. SV40 virus interacts with caveolae on the surface and is internalized into caveolin-associated vesicles. The pinching off of the caveolae is apparently induced by the virions.
-
(2001)
Nat Cell Biol
, vol.3
, pp. 473-483
-
-
Pelkmans, L.1
Kartenbeck, J.2
Helenius, A.3
|