-
1
-
-
0013434847
-
Homoclinics: Poincaré-Melnikov type results via a variational approach
-
Ambrosetti, A. and Badiale, M.: Homoclinics: Poincaré-Melnikov type results via a variational approach. Ann. Inst. H. Poincaré. Anal. Non Linéaire 15, 233-252 (1998)
-
(1998)
Ann. Inst. H. Poincaré. Anal. Non Linéaire
, vol.15
, pp. 233-252
-
-
Ambrosetti, A.1
Badiale, M.2
-
2
-
-
0002237653
-
Variational perturbative methods and bifurcation of bound states from the essential spectrum
-
Ambrosetti, A. and Badiale, M.: Variational perturbative methods and bifurcation of bound states from the essential spectrum. Proc. Roy. Soc. Edinburgh Sect. A 128, 1131-1161 (1998)
-
(1998)
Proc. Roy. Soc. Edinburgh Sect. A
, vol.128
, pp. 1131-1161
-
-
Ambrosetti, A.1
Badiale, M.2
-
3
-
-
0000185270
-
Homoclinic solutions of Hamiltonian systems with symmetry
-
Arioli, G. and Szulkin, A.: Homoclinic solutions of Hamiltonian systems with symmetry. J. Diff. Eq. 158, 291-393 (1999)
-
(1999)
J. Diff. Eq.
, vol.158
, pp. 291-393
-
-
Arioli, G.1
Szulkin, A.2
-
4
-
-
0001594538
-
Infinitely many solutions of a symmetric dirichlet problem
-
Bartsch, T.: Infinitely many solutions of a symmetric Dirichlet problem. Nonlinear Anal. 20, 1205-1216 (1993)
-
(1993)
Nonlinear Anal.
, vol.20
, pp. 1205-1216
-
-
Bartsch, T.1
-
5
-
-
0039441081
-
On a nonlinear Schrödinger equation with periodic potential
-
Bartsch, T. and Ding, Y.H.: On a nonlinear Schrödinger equation with periodic potential. Math. Ann. 313, 15-37 (1999)
-
(1999)
Math. Ann.
, vol.313
, pp. 15-37
-
-
Bartsch, T.1
Ding, Y.H.2
-
6
-
-
0001887979
-
Infinitely many solutions of nonlinear elliptic problems
-
Birkäuser, Basel
-
Bartsch, T. and de Figueiredo, D.: Infinitely many solutions of nonlinear elliptic problems. In: Progress in Nonlin. Diff. Equ. and Their Appl. 35, 51-67, Birkäuser, Basel (1999)
-
(1999)
Progress in Nonlin. Diff. Equ. and Their Appl.
, vol.35
, pp. 51-67
-
-
Bartsch, T.1
De Figueiredo, D.2
-
8
-
-
0001074802
-
Characterization of the ranges of some nonlinear operators and applications to boundary value problems
-
Brézis, H. and Nirenberg, L.: Characterization of the ranges of some nonlinear operators and applications to boundary value problems. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 5, 225-326 (1978)
-
(1978)
Ann. Scuola Norm. Sup. Pisa Cl. Sci.
, vol.5
, Issue.4
, pp. 225-326
-
-
Brézis, H.1
Nirenberg, L.2
-
9
-
-
0013064021
-
Homoclinic orbits for a class of infinite dimensional Hamiltonian systems
-
Clément, P., Felmer, P., and Mitidieri, E.: Homoclinic orbits for a class of infinite dimensional Hamiltonian systems. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 24, 367-393 (1997)
-
(1997)
Ann. Scuola Norm. Sup. Pisa Cl. Sci.
, vol.24
, Issue.4
, pp. 367-393
-
-
Clément, P.1
Felmer, P.2
Mitidieri, E.3
-
10
-
-
0000830631
-
A variational approach to homoclinic orbits in Hamiltonian systems
-
Coti-Zelati, V., Ekeland, I., and Sèrè, E.: A variational approach to homoclinic orbits in Hamiltonian systems. Math. Ann. 288, 133-160 (1990)
-
(1990)
Math. Ann.
, vol.288
, pp. 133-160
-
-
Coti-Zelati, V.1
Ekeland, I.2
Sèrè, E.3
-
11
-
-
84968502322
-
Homoctinic orbits for second order Hamiltonian systems possessing superquactratic potentials
-
Coti-Zelati, V. and Rabinowitz, P.H.: Homoctinic orbits for second order Hamiltonian systems possessing superquactratic potentials. J. Amer. Math. Soc. 4, 693-727 (1991)
-
(1991)
J. Amer. Math. Soc.
, vol.4
, pp. 693-727
-
-
Coti-Zelati, V.1
Rabinowitz, P.H.2
-
13
-
-
0033212485
-
Infinitely many homoclinic orbits of a Hamiltonian sytem with symmetry
-
Ding, Y. and Girardi, M.: Infinitely many homoclinic orbits of a Hamiltonian sytem with symmetry. Nonlinear Anal. 38, 391-415 (1999)
-
(1999)
Nonlinear Anal.
, vol.38
, pp. 391-415
-
-
Ding, Y.1
Girardi, M.2
-
14
-
-
0033243101
-
Homoclinic orbits of a Hamiltonian system
-
Ding, Y. and Willem, M.: Homoclinic orbits of a Hamiltonian system. Z. Angew. Math. Phys. 50, 759-778 (1999)
-
(1999)
Z. Angew. Math. Phys.
, vol.50
, pp. 759-778
-
-
Ding, Y.1
Willem, M.2
-
16
-
-
0001093993
-
First order elliptic systems and the existence of homoclinic orbits in Hamiltonian systems
-
Hofer, H. and Wysocki, K.: First order elliptic systems and the existence of homoclinic orbits in Hamiltonian systems. Math. Ann. 228, 483-503 (1990)
-
(1990)
Math. Ann.
, vol.228
, pp. 483-503
-
-
Hofer, H.1
Wysocki, K.2
-
17
-
-
0001691788
-
Generalized linking theorem with an application to a semilinear Schrödinger equation
-
Kryszewski, W. and Szulkin, A.: Generalized linking theorem with an application to a semilinear Schrödinger equation. Adv. in Diff. Equations 3, 441-472 (1998)
-
(1998)
Adv. in Diff. Equations
, vol.3
, pp. 441-472
-
-
Kryszewski, W.1
Szulkin, A.2
-
19
-
-
85030719142
-
The concentration-compactness principle in the calculus of variations. The locally compact case - Part II
-
Lions, P.: The concentration-compactness principle in the calculus of variations. The locally compact case. Part II. Ann. Inst. H. Poincaré. Anal. Non Linéaire 1, 223-283 (1984)
-
(1984)
Ann. Inst. H. Poincaré. Anal. Non Linéaire
, vol.1
, pp. 223-283
-
-
Lions, P.1
-
20
-
-
0001834849
-
On the stability of the center for periodic perturbations
-
Melnikov, V.K.: On the stability of the center for periodic perturbations. Trans. Moscow Math. Soc. 12, 1-57 (1963)
-
(1963)
Trans. Moscow Math. Soc.
, vol.12
, pp. 1-57
-
-
Melnikov, V.K.1
-
21
-
-
84972475883
-
Homoclinic orbits for a class of Hamiltonian systems
-
Rabinowitz, P.: Homoclinic orbits for a class of Hamiltonian systems. Proc. Roy. Soc. Edinburgh Sect. A 114A, 33-38 (1990)
-
(1990)
Proc. Roy. Soc. Edinburgh Sect. A
, vol.114 A
, pp. 33-38
-
-
Rabinowitz, P.1
-
23
-
-
51249165518
-
Existence of infinitely many homoclinic orbits in Hamiltonian systems
-
Séré, E.: Existence of infinitely many homoclinic orbits in Hamiltonian systems. Math. Z. 209, 27-42 (1992)
-
(1992)
Math. Z.
, vol.209
, pp. 27-42
-
-
Séré, E.1
-
25
-
-
0013115546
-
Bifurcation of homoclinic orbits and bifurcation from the essential spectrum
-
Stuart, C.: Bifurcation of homoclinic orbits and bifurcation from the essential spectrum. SIAM J. Math. Anal. 20, 1145-1171 (1989)
-
(1989)
SIAM J. Math. Anal.
, vol.20
, pp. 1145-1171
-
-
Stuart, C.1
-
26
-
-
38149144312
-
Homoclinic orbits in a first order superquadratic hamiltonian system: Convergence of subharmonic orbits
-
Tanaka, K.: Homoclinic orbits in a first order superquadratic hamiltonian system: Convergence of subharmonic orbits. J. Differential Equations 94, 315-339 (1991)
-
(1991)
J. Differential Equations
, vol.94
, pp. 315-339
-
-
Tanaka, K.1
|