-
1
-
-
0030376845
-
Multibump periodic motions of an infinite lattice of particles
-
G. Arioli, F. Gazzola, and S. Terracini, Multibump periodic motions of an infinite lattice of particles, Math. Z. 223 (1996), 627-642.
-
(1996)
Math. Z.
, vol.223
, pp. 627-642
-
-
Arioli, G.1
Gazzola, F.2
Terracini, S.3
-
2
-
-
51249170662
-
A simple proof of the degree formula for Z/p-equivariant maps
-
T. Bartsch, A simple proof of the degree formula for Z/p-equivariant maps, Math. Z. 212 (1992), 285-292.
-
(1992)
Math. Z.
, vol.212
, pp. 285-292
-
-
Bartsch, T.1
-
4
-
-
0030600877
-
Critical point theory for indefinite functionals with symmetries
-
T. Bartsch and M. Clapp, Critical point theory for indefinite functionals with symmetries, J. Funct. Anal. 138 (1996), 107-136.
-
(1996)
J. Funct. Anal.
, vol.138
, pp. 107-136
-
-
Bartsch, T.1
Clapp, M.2
-
5
-
-
0001232950
-
On critical point theory for indefinite functionals in the presence of symmetries
-
V. Benci, On critical point theory for indefinite functionals in the presence of symmetries, Trans. Amer. Math. Soc. 274 (1982), 533-572.
-
(1982)
Trans. Amer. Math. Soc.
, vol.274
, pp. 533-572
-
-
Benci, V.1
-
6
-
-
0004198295
-
-
Springer-Verlag, New York/Berlin
-
N. Bourbaki, "Algebra I," Springer-Verlag, New York/Berlin, 1989.
-
(1989)
Algebra I
-
-
Bourbaki, N.1
-
8
-
-
0000830631
-
A variational approach to homoclinic orbits in Hamiltonian systems
-
V. Coti Zelati, I. Ekeland, and E. Séré, A variational approach to homoclinic orbits in Hamiltonian systems, Math. Ann. 288 (1990), 133-160.
-
(1990)
Math. Ann.
, vol.288
, pp. 133-160
-
-
Coti Zelati, V.1
Ekeland, I.2
Séré, E.3
-
9
-
-
84968502322
-
Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials
-
V. Coti Zelati and P. H. Rabinowitz, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc. 4 (1991), 693-727.
-
(1991)
J. Amer. Math. Soc.
, vol.4
, pp. 693-727
-
-
Coti Zelati, V.1
Rabinowitz, P.H.2
-
12
-
-
0033212485
-
Infinitely many homoclinic orbits of a Hamiltonian system with symmetry
-
Y. H. Ding and M. Girardi, Infinitely many homoclinic orbits of a Hamiltonian system with symmetry, Nonl. Anal. TMA 38 (1999), 391-415.
-
(1999)
Nonl. Anal. TMA
, vol.38
, pp. 391-415
-
-
Ding, Y.H.1
Girardi, M.2
-
13
-
-
33646088474
-
Homoclinic orbits of a Hamiltonian system
-
in press
-
Y. H. Ding and M. Willem, Homoclinic orbits of a Hamiltonian system, ZAMP, in press.
-
ZAMP
-
-
Ding, Y.H.1
Willem, M.2
-
14
-
-
0001093993
-
First order elliptic systems and the existence of homoclinic orbits in Hamiltonian systems
-
H. Hofer and K. Wysocki, First order elliptic systems and the existence of homoclinic orbits in Hamiltonian systems, Math. Ann. 288 (1990), 483-503.
-
(1990)
Math. Ann.
, vol.288
, pp. 483-503
-
-
Hofer, H.1
Wysocki, K.2
-
15
-
-
0001691788
-
Generalized linking theorem with an application to semilinear Schrödinger equation
-
W. Kryszewski and A. Szulkin, Generalized linking theorem with an application to semilinear Schrödinger equation, Adv. Differential Equations 3 (1998), 441-472.
-
(1998)
Adv. Differential Equations
, vol.3
, pp. 441-472
-
-
Kryszewski, W.1
Szulkin, A.2
-
17
-
-
23044481039
-
-
CBMS, Amer. Math. Soc., Providence, RI
-
P. H. Rabinowitz, "Minimax Methods in Critical Point Theory with Applications to Differential Equations," CBMS, Vol. 65, Amer. Math. Soc., Providence, RI, 1986.
-
(1986)
Minimax Methods in Critical Point Theory with Applications to Differential Equations
, vol.65
-
-
Rabinowitz, P.H.1
-
18
-
-
51249165518
-
Existence of infinitely many homoclinic orbits in Hamiltonian systems
-
E. Séré, Existence of infinitely many homoclinic orbits in Hamiltonian systems, Math. Z. 209 (1992), 27-42.
-
(1992)
Math. Z.
, vol.209
, pp. 27-42
-
-
Séré, E.1
-
19
-
-
85048948280
-
Looking for the Bernoulli shift
-
E. Séré, Looking for the Bernoulli shift, Ann. Inst. H. Poincaré 10 (1993), 561-590.
-
(1993)
Ann. Inst. H. Poincaré
, vol.10
, pp. 561-590
-
-
Séré, E.1
-
20
-
-
0003346406
-
Bifurcation into spectral gaps
-
C. A. Stuart, Bifurcation into spectral gaps, Bull. Belg. Math. Soc. (1995), Supplement.
-
(1995)
Bull. Belg. Math. Soc.
, Issue.SUPPL.
-
-
Stuart, C.A.1
-
21
-
-
38149144312
-
Homoclinic orbits in a first order superquadratic Hamiltonian system: Convergence of subharmonic orbits
-
K. Tanaka, Homoclinic orbits in a first order superquadratic Hamiltonian system: Convergence of subharmonic orbits, J. Differential Equations 94 (1991), 315-339.
-
(1991)
J. Differential Equations
, vol.94
, pp. 315-339
-
-
Tanaka, K.1
|