-
1
-
-
0001125277
-
Multiplicité des orbites homoclines pour des systèmes conservatifs
-
A. Ambrosetti, V. Coti-Zelati, Multiplicité des orbites homoclines pour des systèmes conservatifs, C. R. Acad. Sci. Paris 314 (1992) 601-604.
-
(1992)
C. R. Acad. Sci. Paris
, vol.314
, pp. 601-604
-
-
Ambrosetti, A.1
Coti-Zelati, V.2
-
2
-
-
0002709196
-
Dichotomies in Stability Theory
-
Springer, Berlin
-
W.A. Coppel, Dichotomies in Stability Theory, Lecture Notes in Maths, vol. 629, Springer, Berlin, 1978.
-
(1978)
Lecture Notes in Maths
, vol.629
-
-
Coppel, W.A.1
-
3
-
-
0000830631
-
A variational approach to homoclinic orbits in Hamiltonian systems
-
V. Coti-Zelati, I. Ekeland, E. Séré, A variational approach to homoclinic orbits in Hamiltonian systems, Math. Ann. 228 (1990) 133-160.
-
(1990)
Math. Ann.
, vol.228
, pp. 133-160
-
-
Coti-Zelati, V.1
Ekeland, I.2
Séré, E.3
-
4
-
-
84968502322
-
Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials
-
V. Coti-Zelati, P.H. Rabinowitz, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc. 4 (1991) 693-727.
-
(1991)
J. Amer. Math. Soc.
, vol.4
, pp. 693-727
-
-
Coti-Zelati, V.1
Rabinowitz, P.H.2
-
5
-
-
0000891295
-
Existence and multiplicity results for homoclinic solutions to a class of Hamiltonian systems
-
Y.H. Ding, Existence and multiplicity results for homoclinic solutions to a class of Hamiltonian systems, Nonlinear Anal. TMA 25 (1995) 1095-1113.
-
(1995)
Nonlinear Anal. TMA
, vol.25
, pp. 1095-1113
-
-
Ding, Y.H.1
-
6
-
-
0000060673
-
Periodic and homoclinic solutions to a class of Hamiltonian systems with the potentials changing sign
-
Y.H. Ding, M. Girardi, Periodic and homoclinic solutions to a class of Hamiltonian systems with the potentials changing sign, Dynamic Systems Appl. 2 (1993) 131-145.
-
(1993)
Dynamic Systems Appl.
, vol.2
, pp. 131-145
-
-
Ding, Y.H.1
Girardi, M.2
-
7
-
-
28244439717
-
Homoclinic orbits for first order Hamiltonian systems
-
Y.H. Ding, S.J. Li, Homoclinic orbits for first order Hamiltonian systems, J. Math. Anal. Appl. 189 (1995) 585-601.
-
(1995)
J. Math. Anal. Appl.
, vol.189
, pp. 585-601
-
-
Ding, Y.H.1
Li, S.J.2
-
8
-
-
33646088474
-
Homoclinic orbits of a Hamiltonian system
-
to appear
-
Y.H. Ding, M. Willem, Homoclinic orbits of a Hamiltonian system, ZAMP, to appear.
-
ZAMP
-
-
Ding, Y.H.1
Willem, M.2
-
9
-
-
0001093993
-
First-order elliptic systems and the existence of homoclinic orbits in Hamiltonian systems
-
H. Hofer, K. Wysocki, First-order elliptic systems and the existence of homoclinic orbits in Hamiltonian systems, Math. Ann. 228 (1990) 483-503.
-
(1990)
Math. Ann.
, vol.228
, pp. 483-503
-
-
Hofer, H.1
Wysocki, K.2
-
12
-
-
85030707196
-
The concentration-compactness principle in the calculus of variations
-
P.L. Lions, The concentration-compactness principle in the calculus of variations, Ann. Inst. Henri Poincaré, Analyse Non Linéaire 1 (1984) 109-145 and 223-283.
-
(1984)
Ann. Inst. Henri Poincaré, Analyse Non Linéaire
, vol.1
, pp. 109-145
-
-
Lions, P.L.1
-
13
-
-
0000520530
-
Homoclinic orbits for a class of Hamiltonian systems
-
W. Omana, M. Willem, Homoclinic orbits for a class of Hamiltonian systems, Differential Integral Equations 5 (1992) 1115-1120.
-
(1992)
Differential Integral Equations
, vol.5
, pp. 1115-1120
-
-
Omana, W.1
Willem, M.2
-
14
-
-
84972475883
-
Homoclinic orbits for a class of Hamiltonian systems
-
P.H. Rabinowitz, Homoclinic orbits for a class of Hamiltonian systems, Proc. Roy. Soc. Edinburgh 114 (1990) 33-38.
-
(1990)
Proc. Roy. Soc. Edinburgh
, vol.114
, pp. 33-38
-
-
Rabinowitz, P.H.1
-
15
-
-
51249171492
-
Some results on connecting orbits for a class of Hamiltonian systems
-
P.H. Rabinowitz, K. Tànaka, Some results on connecting orbits for a class of Hamiltonian systems, Math. Z. 206 (1991) 473-499.
-
(1991)
Math. Z.
, vol.206
, pp. 473-499
-
-
Rabinowitz, P.H.1
Tànaka, K.2
-
17
-
-
51249165518
-
Existence of infinitely many homoclinic orbits in Hamiltonian systems
-
E. Séré, Existence of infinitely many homoclinic orbits in Hamiltonian systems, Math. Z. 209 (1992) 27-42.
-
(1992)
Math. Z.
, vol.209
, pp. 27-42
-
-
Séré, E.1
-
18
-
-
38149144312
-
Homoclinic orbits in a first order superquadratic Hamiltonian system: Convergence of subharmonic orbits
-
K. Tanaka, Homoclinic orbits in a first order superquadratic Hamiltonian system: Convergence of subharmonic orbits, J. Differential Equations 94 (1991) 315-339.
-
(1991)
J. Differential Equations
, vol.94
, pp. 315-339
-
-
Tanaka, K.1
-
19
-
-
0003882441
-
-
North-Holland, Amsterdam
-
H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978.
-
(1978)
Interpolation Theory, Function Spaces, Differential Operators
-
-
Triebel, H.1
|