메뉴 건너뛰기




Volumn 15, Issue 2, 1998, Pages 233-252

Homoclinics: Poincaré-Melnikov type results via a variational approach

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0013434847     PISSN: 02941449     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0294-1449(97)89300-6     Document Type: Article
Times cited : (140)

References (19)
  • 3
    • 0001168993 scopus 로고
    • Multiple homoclinic orbits for a class of conservative systems
    • A. AMBROSETTI and V. COTI ZELATI, Multiple homoclinic orbits for a class of conservative systems, Rend. Sem. Mat. Univ. Padova, Vol. 89, 1993, pp. 177-194, and Note C.R.A.S., Vol. 314, 1992, pp. 601-604.
    • (1993) Rend. Sem. Mat. Univ. Padova , vol.89 , pp. 177-194
    • Ambrosetti, A.1    Zelati, V.C.2
  • 4
    • 0040282878 scopus 로고
    • A. AMBROSETTI and V. COTI ZELATI, Multiple homoclinic orbits for a class of conservative systems, Rend. Sem. Mat. Univ. Padova, Vol. 89, 1993, pp. 177-194, and Note C.R.A.S., Vol. 314, 1992, pp. 601-604.
    • (1992) Note C.R.A.S. , vol.314 , pp. 601-604
  • 7
    • 0009329352 scopus 로고
    • A variational proof of a Sitnikov-like theorem
    • U. BESSI, A variational proof of a Sitnikov-like theorem, Nonlin. Anal. TMA, Vol. 20, 1993, pp. 1303-1318.
    • (1993) Nonlin. Anal. TMA , vol.20 , pp. 1303-1318
    • Bessi, U.1
  • 8
    • 0001849484 scopus 로고
    • Homoclinic orbits to invariant tori of Hamiltonian systems
    • S. V. BOLOTIN, Homoclinic orbits to invariant tori of Hamiltonian systems, A.M.S. Transl. Vol. 168, 1995, pp. 21-90.
    • (1995) A.M.S. Transl. , vol.168 , pp. 21-90
    • Bolotin, S.V.1
  • 9
    • 0000830631 scopus 로고
    • A variational approach to homoclinic orbits in Hamiltonian systems
    • V. COTI ZELATI, I. EKELAND and E. SÉRÉ, A variational approach to homoclinic orbits in Hamiltonian systems. Math. Ann., Vol. 288, 1990, pp. 133-160.
    • (1990) Math. Ann. , vol.288 , pp. 133-160
    • Zelati, V.C.1    Ekeland, I.2    Séré, E.3
  • 10
    • 84968502322 scopus 로고
    • Homoclinic orbits for a second order hamiltonian systems possessing superquadratic potentials
    • V. COTI ZELATI and P. H. RABINOWITZ, Homoclinic orbits for a second order Hamiltonian systems possessing superquadratic potentials. Jour. Am. Math. Soc., Vol. 4, 1991. pp. 693-727.
    • (1991) Jour. Am. Math. Soc. , vol.4 , pp. 693-727
    • Zelati, V.C.1    Rabinowitz, P.H.2
  • 11
    • 84957162365 scopus 로고
    • Integrability and non-integrability in Hamiltonian mechanics
    • V. V. KOZLOV, Integrability and non-integrability in Hamiltonian Mechanics. Russian Math. Surveys, Vol. 38, 1983, pp. 1-76.
    • (1983) Russian Math. Surveys , vol.38 , pp. 1-76
    • Kozlov, V.V.1
  • 12
    • 0025483092 scopus 로고
    • Chaotic behaviour in simple dynamical systems
    • U. KIRCHGRABER and D. STOFFER, Chaotic behaviour in simple dynamical systems, SIAM Review. Vol. 32, 1990, pp. 424-452.
    • (1990) SIAM Review , vol.32 , pp. 424-452
    • Kirchgraber, U.1    Stoffer, D.2
  • 14
    • 0040282872 scopus 로고
    • Bifurcation d'horbites homoclines pour les systèmes hamiltoniens
    • S. MATHLOUTI, Bifurcation d'horbites homoclines pour les systèmes hamiltoniens. Ann. Fac. Sciences Toulouse, Vol. 1, 1992, pp. 211-235.
    • (1992) Ann. Fac. Sciences Toulouse , vol.1 , pp. 211-235
    • Mathlouti, S.1
  • 15
    • 0001834849 scopus 로고
    • On the stability of the center for time periodic perturbations
    • V. K. MELNIKOV, On the stability of the center for time periodic perturbations, Trans. Moscow Math. Soc., Vol. 12, 1963, pp. 3-52.
    • (1963) Trans. Moscow Math. Soc. , vol.12 , pp. 3-52
    • Melnikov, V.K.1
  • 17
    • 51249165518 scopus 로고
    • Existence of infinitely many homoclinic orbits in Hamiltonian systems
    • E. SÉRÉ, Existence of infinitely many homoclinic orbits in Hamiltonian systems, Math. Z., Vol. 209, 1992, pp. 27-42.
    • (1992) Math. Z. , vol.209 , pp. 27-42
    • Séré, E.1
  • 19
    • 0000541044 scopus 로고
    • A note on the existence of multiple homoclinics orbits for a perturbed radial potential
    • K. TANAKA, A note on the existence of multiple homoclinics orbits for a perturbed radial potential, NoDEA, Vol. 1, 1994, pp. 149-162.
    • (1994) NoDEA , vol.1 , pp. 149-162
    • Tanaka, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.