-
2
-
-
0035002807
-
Evaluation of gene-finding programs on mammalian sequences
-
S. Rogic, A.K. Mackworth and F.B.F. Ouellette, Evaluation of gene-finding programs on mammalian sequences, Genomic Research 11 (2001), 817-832.
-
(2001)
Genomic Research
, vol.11
, pp. 817-832
-
-
Rogic, S.1
Mackworth, A.K.2
Ouellette, F.B.F.3
-
3
-
-
0024610919
-
A tutorial on hidden Markov models and selected applications in speech recognition
-
Feb.
-
L.R. Rabiner, A tutorial on hidden markov models and selected applications in speech recognition, Proceedings of the IEEE 77(2) (Feb. 1989), 257-285.
-
(1989)
Proceedings of the IEEE
, vol.77
, Issue.2
, pp. 257-285
-
-
Rabiner, L.R.1
-
5
-
-
0001012402
-
Bayesian temporal data clustering using hidden Markov model representation
-
P. Langley, ed., Morgan Kaufmann Publishers
-
C. Li and G. Biswas, Bayesian temporal data clustering using hidden markov model representation, in: Proceedings of the 17th International conference on Machine Learning. P. Langley, ed., Morgan Kaufmann Publishers, 2000, pp. 543-550.
-
(2000)
Proceedings of the 17th International conference on Machine Learning
, pp. 543-550
-
-
Li, C.1
Biswas, G.2
-
6
-
-
0022890536
-
Maximum mutual information estimation of hidden Markov model parameters
-
L.R. Bahl, P.F. Brown, P.V. De Souza and R.L. Mercer, Maximum mutual information estimation of hidden markov model parameters, in: Proceedings of the IEEE-IECEJ-AS International Conference on Acoustics, Speech, and Signal Processing, (Vol. 1), 1986, pp. 49-52.
-
(1986)
Proceedings of the IEEE-IECEJ-AS International Conference on Acoustics, Speech, and Signal Processing
, vol.1
, pp. 49-52
-
-
Bahl, L.R.1
Brown, P.F.2
De Souza, P.V.3
Mercer, R.L.4
-
7
-
-
84899029607
-
Training algorithms for hidden Markov models using entropy based distance functions
-
Y. Singer and M. Warmuth, Training algorithms for hidden markov models using entropy based distance functions, Advances in Neural Information Processing Systems 9 (1996), 641-647.
-
(1996)
Advances in Neural Information Processing Systems
, vol.9
, pp. 641-647
-
-
Singer, Y.1
Warmuth, M.2
-
8
-
-
0030216671
-
Training approaches for hidden Markov models
-
S. Kwong, Q.H. He and K.F. Man, Training approaches for hidden markov models, Electronics Letters 32(17) (1996), 1554-1555.
-
(1996)
Electronics Letters
, vol.32
, Issue.17
, pp. 1554-1555
-
-
Kwong, S.1
He, Q.H.2
Man, K.F.3
-
9
-
-
0000353178
-
A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains
-
L.E. Baum, T. Petrie, G. Soules and N. Weiss, A maximization technique occurring in the statistical analysis of probabilistic functions of markov chains, The Annuals of Mathematical Statistics 4(1) (1970), 164-171.
-
(1970)
The Annuals of Mathematical Statistics
, vol.4
, Issue.1
, pp. 164-171
-
-
Baum, L.E.1
Petrie, T.2
Soules, G.3
Weiss, N.4
-
11
-
-
0031268341
-
Factorial hidden Markov models
-
Z. Ghahramani and M.I. Jordan, Factorial hidden markov models, Machine Leaning 29 (1997), 245-273.
-
(1997)
Machine Leaning
, vol.29
, pp. 245-273
-
-
Ghahramani, Z.1
Jordan, M.I.2
-
12
-
-
0003615076
-
-
Tech. Rep. TR-94-003, International Computer Science Institute, 1947 Center St., Suite 600, Berkeley, CA 94704-1198, Jan.
-
A. Stolcke and S.M. Omohundro, Best-first model merging for hidden markov model induction, Tech. Rep. TR-94-003, International Computer Science Institute, 1947 Center St., Suite 600, Berkeley, CA 94704-1198, Jan. 1994.
-
(1994)
Best-first model merging for hidden markov model induction
-
-
Stolcke, A.1
Omohundro, S.M.2
-
13
-
-
0025670811
-
Learning the structure of hmm's through grammatical inference techniques
-
F. Casacuberta, E. Vidal and B. Mas, Learning the structure of hmm's through grammatical inference techniques, in: Proceedings of the International Conference on Acoustic, Speech, and Signal Processing, 1990, pp. 717-720.
-
(1990)
Proceedings of the International Conference on Acoustic, Speech, and Signal Processing
, pp. 717-720
-
-
Casacuberta, F.1
Vidal, E.2
Mas, B.3
-
14
-
-
0000675167
-
Structure learning in conditional probability models via an entropic prior and parameter extinction
-
M. Brand, Structure learning in conditional probability models via an entropic prior and parameter extinction, Neural Computation 11 (1999), 1155-1182.
-
(1999)
Neural Computation
, vol.11
, pp. 1155-1182
-
-
Brand, M.1
-
15
-
-
85013744934
-
A successive state splitting algorithm for efficient allophone modeling
-
J. Takami and S. Sagayama, A successive state splitting algorithm for efficient allophone modeling, in: Proceedings of the International Conference on Acoustics, Speech, and Signal Processing 1, 1992, pp. 573-576.
-
(1992)
Proceedings of the International Conference on Acoustics, Speech, and Signal Processing
, vol.1
, pp. 573-576
-
-
Takami, J.1
Sagayama, S.2
-
16
-
-
0030715097
-
Hmm topology design using maximum likelihood successive state splitting
-
M. Ostendorf and H. Singer, Hmm topology design using maximum likelihood successive state splitting, Computer Speech and Language 11 (1997), 17-41.
-
(1997)
Computer Speech and Language
, vol.11
, pp. 17-41
-
-
Ostendorf, M.1
Singer, H.2
-
17
-
-
1542559558
-
Graphical models and variational methods
-
D. Saad and M. Opper, eds, MIT press
-
Z. Ghahramani and M.J. Beal, Graphical models and variational methods, in: Advanced Mean Field Methods - Theory and Practice, D. Saad and M. Opper, eds, MIT press, 1999.
-
(1999)
Advanced Mean Field Methods - Theory and Practice
-
-
Ghahramani, Z.1
Beal, M.J.2
-
18
-
-
0000698534
-
Variational inference for bayesian mixtures of factor analysers
-
S.A. Solla, T.K. Leen and K.R. Muller, eds, MIT press, Cambridge, MA
-
Z. Ghahramani and M.J. Beal, Variational inference for bayesian mixtures of factor analysers, in: Advances in Neural Information Processing Systems, (Vol. 12), S.A. Solla, T.K. Leen and K.R. Muller, eds, MIT press, Cambridge, MA, 1999.
-
(1999)
Advances in Neural Information Processing Systems
, vol.12
-
-
Ghahramani, Z.1
Beal, M.J.2
-
19
-
-
84898964031
-
A variational bayesian framework for graphical models
-
T. et al. Leen, ed., MIT press, Cambridge, MA
-
H. Attias, A variational bayesian framework for graphical models, in: Advances in Neural Information Processing Systems, T. et al. Leen, ed., MIT press, Cambridge, MA, 2000.
-
(2000)
Advances in Neural Information Processing Systems
-
-
Attias, H.1
-
21
-
-
34249832377
-
A bayesian method for the induction of probabilistic network from data
-
G.F. Cooper and E. Herskovits, A bayesian method for the induction of probabilistic network from data, Machine Learning 9 (1992), 309-347.
-
(1992)
Machine Learning
, vol.9
, pp. 309-347
-
-
Cooper, G.F.1
Herskovits, E.2
-
24
-
-
84937730674
-
Explaining the gibbs sampler
-
Aug.
-
G. Casella and E.I. George, Explaining the gibbs sampler, The American Statistician 46(3) (Aug. 1992), 167-174.
-
(1992)
The American Statistician
, vol.46
, Issue.3
, pp. 167-174
-
-
Casella, G.1
George, E.I.2
-
25
-
-
0000120766
-
Estimating the dimension of a model
-
G. Schwarz, Estimating the dimension of a model, Annuals of Statistics 6 (1978), 461-464.
-
(1978)
Annuals of Statistics
, vol.6
, pp. 461-464
-
-
Schwarz, G.1
-
26
-
-
0002607026
-
Bayesian classification(autoclass): Theory and results
-
(Chapter 6), U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth and R. Uthurusamy, eds, AAAI-MIT press
-
P. Cheeseman and J. Stutz, Bayesian classification(autoclass): Theory and results, in: Advances in Knowledge Discovery and Data Mining, (Chapter 6), U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth and R. Uthurusamy, eds, AAAI-MIT press, 1996, pp. 153-180.
-
(1996)
Advances in Knowledge Discovery and Data Mining
, pp. 153-180
-
-
Cheeseman, P.1
Stutz, J.2
-
27
-
-
0001098776
-
A universal prior for integers and estimation by minimum description length
-
J. Rissanen, A universal prior for integers and estimation by minimum description length, Annual of Statistics 11 (1983), 416-431.
-
(1983)
Annual of Statistics
, vol.11
, pp. 416-431
-
-
Rissanen, J.1
-
29
-
-
0031272327
-
Efficient approximations for the marginal likelihood of bayesian networks with hidden variables
-
D.M. Chickering and D. Heckerman, Efficient approximations for the marginal likelihood of bayesian networks with hidden variables, Machine Learning 29 (1997), 181-212.
-
(1997)
Machine Learning
, vol.29
, pp. 181-212
-
-
Chickering, D.M.1
Heckerman, D.2
-
32
-
-
63249112814
-
Dimensionality and sample size considerations in pattern recognition practice
-
P.R. Krishnaiah and L.N. Kanal, eds, North-Holland Publishing Company, Amsterdam
-
A.N. Jain and B. Chandrasekaran, Dimensionality and sample size considerations in pattern recognition practice, in: Handbook of statistics, P.R. Krishnaiah and L.N. Kanal, eds, North-Holland Publishing Company, Amsterdam, 1982, pp. 835-855.
-
(1982)
Handbook of statistics
, pp. 835-855
-
-
Jain, A.N.1
Chandrasekaran, B.2
|