메뉴 건너뛰기




Volumn 7, Issue 1-2, 1998, Pages 71-76

Prognostic factors: Guidelines for investigation design and state of the art analytical methods

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; CANCER SURGERY; CANCER SURVIVAL; HUMAN; MEDICAL LITERATURE; MULTIVARIATE ANALYSIS; PRACTICE GUIDELINE; PREDICTION; PRIORITY JOURNAL; PROGNOSIS; REGRESSION ANALYSIS; REVIEW; STATISTICAL MODEL; SURGICAL TECHNIQUE; TREATMENT OUTCOME;

EID: 0002542867     PISSN: 09607404     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0960-7404(98)00029-2     Document Type: Article
Times cited : (17)

References (31)
  • 3
    • 0023213901 scopus 로고
    • A new prognostic classification of rectal cancer
    • [3] Jass JR, Love SB, Northover JMA. A new prognostic classification of rectal cancer. Lancet 1987;i:1303-6.
    • (1987) Lancet , vol.1 , pp. 1303-1306
    • Jass, J.R.1    Love, S.B.2    Northover, J.M.A.3
  • 4
    • 0024438696 scopus 로고
    • Dukes' classification revisited
    • [4] Fisher ER, Sass R, Palekar A et al. Dukes' classification revisited. Cancer 1989;64:2354-60.
    • (1989) Cancer , vol.64 , pp. 2354-2360
    • Fisher, E.R.1    Sass, R.2    Palekar, A.3
  • 5
    • 0030743761 scopus 로고    scopus 로고
    • Artificial neural networks applied to outcome prediction for colorectal cancer patients in separate institutions
    • [5] Bottaci L, Drew PJ, Hartley JE et al. Artificial neural networks applied to outcome prediction for colorectal cancer patients in separate institutions. Lancet 1997;350:469-72.
    • (1997) Lancet , vol.350 , pp. 469-472
    • Bottaci, L.1    Drew, P.J.2    Hartley, J.E.3
  • 6
    • 0028318390 scopus 로고
    • Statistical aspects of prognostic factor studies in oncology
    • [6] Simon R, Altman DG. Statistical aspects of prognostic factor studies in oncology. British Journal of Cancer 1994;69:979-85.
    • (1994) British Journal of Cancer , vol.69 , pp. 979-985
    • Simon, R.1    Altman, D.G.2
  • 7
    • 0021857146 scopus 로고
    • Regression models for prognostic prediction: Advantages, problems and suggested solutions
    • [7] Harrell FE, Lee LE, Matchar DB, Reichart TA. Regression models for prognostic prediction: advantages, problems and suggested solutions. Cancer Treatment Reports 1985;69:1071-7.
    • (1985) Cancer Treatment Reports , vol.69 , pp. 1071-1077
    • Harrell, F.E.1    Lee, L.E.2    Matchar, D.B.3    Reichart, T.A.4
  • 8
    • 0024596532 scopus 로고
    • Flexible regresion models with cubic splines
    • [8] Durrelman S, Simon R. Flexible regresion models with cubic splines. Statistics in Medicine 1989;8:551-61.
    • (1989) Statistics in Medicine , vol.8 , pp. 551-561
    • Durrelman, S.1    Simon, R.2
  • 9
    • 0027731147 scopus 로고
    • Comparison of the Cox model and the regression tree procedure in analysing a randomised clinical trial
    • [9] Schmoor C, Ulm K, Schumaker M. Comparison of the Cox model and the regression tree procedure in analysing a randomised clinical trial. Statistics in Medicine 1993;12:2351-66.
    • (1993) Statistics in Medicine , vol.12 , pp. 2351-2366
    • Schmoor, C.1    Ulm, K.2    Schumaker, M.3
  • 10
    • 0023942063 scopus 로고
    • Regression trees for censored data
    • [10] Segal MR. Regression trees for censored data. Biometrics 1988;44:35-47.
    • (1988) Biometrics , vol.44 , pp. 35-47
    • Segal, M.R.1
  • 12
    • 0028019225 scopus 로고
    • Survival analysis of censored data: Neural network analysis detection of complex interactions between variables
    • [12] De Laurentis M, Ravdin PM. Survival analysis of censored data: neural network analysis detection of complex interactions between variables. Breast Cancer Research Treatment 1994;32:113-8.
    • (1994) Breast Cancer Research Treatment , vol.32 , pp. 113-118
    • De Laurentis, M.1    Ravdin, P.M.2
  • 14
    • 0028788276 scopus 로고
    • Application of artificial neural networks to clinical medicine
    • [14] Baxt WG. Application of artificial neural networks to clinical medicine. Lancet 1995;346:1135-8.
    • (1995) Lancet , vol.346 , pp. 1135-1138
    • Baxt, W.G.1
  • 15
    • 0031047117 scopus 로고    scopus 로고
    • Artificial neural networks improve the accuracy of cancer survival prediction
    • [15] Burke HB, Goodman PH, Rosen DB et al. Artificial neural networks improve the accuracy of cancer survival prediction. Cancer 1997;79:857-62.
    • (1997) Cancer , vol.79 , pp. 857-862
    • Burke, H.B.1    Goodman, P.H.2    Rosen, D.B.3
  • 16
    • 0027461886 scopus 로고
    • How to integrate steroid hormone receptor, flow cytometry and other prognostic information for primary breast cancer
    • [16] Clark GM, Wenger CR, Beardslee S et al. How to integrate steroid hormone receptor, flow cytometry and other prognostic information for primary breast cancer. Cancer 1993;71: 2157-62.
    • (1993) Cancer , vol.71 , pp. 2157-2162
    • Clark, G.M.1    Wenger, C.R.2    Beardslee, S.3
  • 18
    • 0023726677 scopus 로고
    • Adjusting survival curves for imbalances in prognostic factors
    • [18] Gregory WM. Adjusting survival curves for imbalances in prognostic factors. British Journal of Cancer 1988;58:202-4.
    • (1988) British Journal of Cancer , vol.58 , pp. 202-204
    • Gregory, W.M.1
  • 20
    • 0025892412 scopus 로고
    • A proposal for examining and reporting stepwisce regressions
    • [20] Hauke WW, Miike R. A proposal for examining and reporting stepwisce regressions. Statistics in Medicine 1991;10:711-5.
    • (1991) Statistics in Medicine , vol.10 , pp. 711-715
    • Hauke, W.W.1    Miike, R.2
  • 21
    • 0026805976 scopus 로고
    • A comparison of all subset and accelerated failure time models with Cox stepwise regression for node-positive breast cancer
    • [21] Chapman JAW, Trudeau ME, Pritchard KI et al. A comparison of all subset and accelerated failure time models with Cox stepwise regression for node-positive breast cancer. Breast Cancer Research Treatment 1993;22:263-72.
    • (1993) Breast Cancer Research Treatment , vol.22 , pp. 263-272
    • Chapman, J.A.W.1    Trudeau, M.E.2    Pritchard, K.I.3
  • 22
    • 0024320123 scopus 로고
    • Bootstrap investigation of the stability of a Cox regression model
    • [22] Altman DG, Anderson PK. Bootstrap investigation of the stability of a Cox regression model. Statistics in Medicine 1989;8:771-83.
    • (1989) Statistics in Medicine , vol.8 , pp. 771-783
    • Altman, D.G.1    Anderson, P.K.2
  • 24
    • 85045811850 scopus 로고
    • Categorising continuous variables
    • [24] Altman DG. Categorising continuous variables. Cancer 1992; 64:975.
    • (1992) Cancer , vol.64 , pp. 975
    • Altman, D.G.1
  • 25
    • 0000549737 scopus 로고
    • The asymptotic properties of nonparametric tests for comparing survival distributions
    • [25] Schoenfield D. The asymptotic properties of nonparametric tests for comparing survival distributions. Biometrika 1981;68: 316-9.
    • (1981) Biometrika , vol.68 , pp. 316-319
    • Schoenfield, D.1
  • 26
    • 0026417634 scopus 로고
    • Stress response protein (srp-27) determination in primary human breast carcinomas: Clinical, histologic and prognostic correlations
    • [26] Thor A, Benz C, Moore D et al. Stress response protein (srp-27) determination in primary human breast carcinomas: clinical, histologic and prognostic correlations. Journal of the National Cancer Institute 1991;83:170-8.
    • (1991) Journal of the National Cancer Institute , vol.83 , pp. 170-178
    • Thor, A.1    Benz, C.2    Moore, D.3
  • 27
    • 0026770594 scopus 로고
    • Relative risk trees for censored survival data
    • [27] Le Blanc M, Crowley J. Relative risk trees for censored survival data. Biometrics 1992;48:411-25.
    • (1992) Biometrics , vol.48 , pp. 411-425
    • Le Blanc, M.1    Crowley, J.2
  • 28
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • [28] Rumelhart D, Hinton G, Williams R. Learning representations by back-propagating errors. Nature 1986;323:533-6.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.1    Hinton, G.2    Williams, R.3
  • 29
    • 0026417610 scopus 로고
    • Breast cancer prognostic factors: Evaluation guidelines
    • [29] McGuire W. Breast cancer prognostic factors: evaluation guidelines. Journal of the National Cancer Institute 1991;83:154-5.
    • (1991) Journal of the National Cancer Institute , vol.83 , pp. 154-155
    • McGuire, W.1
  • 30
    • 0029870969 scopus 로고    scopus 로고
    • Non-linear dynamics for clinicians: Chaos theory, fractals, and complexity at the bed side
    • [30] Goldberger AL. Non-linear dynamics for clinicians: chaos theory, fractals, and complexity at the bed side. Lancet 1996;347: 1312-4.
    • (1996) Lancet , vol.347 , pp. 1312-1314
    • Goldberger, A.L.1
  • 31
    • 0030603338 scopus 로고    scopus 로고
    • A new biological framework for cancer research
    • [31] Schipper HS, Turley EA, Baum M. A new biological framework for cancer research. Lancet 1996;348:1149-51.
    • (1996) Lancet , vol.348 , pp. 1149-1151
    • Schipper, H.S.1    Turley, E.A.2    Baum, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.