|
Volumn 80, Issue 3, 2002, Pages 300-306
|
Large-scale computational identification of HIV T-cell epitopes
a a a |
Author keywords
Artificial neural network; Epitope coverage; Hidden Markov model; HIV; HLA; Peptide; T cell epitope prediction
|
Indexed keywords
EPITOPE;
GAG PROTEIN;
HLA A ANTIGEN;
HLA B ANTIGEN;
POL PROTEIN;
STRUCTURAL PROTEIN;
VIRUS ENVELOPE PROTEIN;
HUMAN IMMUNODEFICIENCY VIRUS ANTIGEN;
AMINO ACID SEQUENCE;
ANALYTIC METHOD;
ARTIFICIAL NEURAL NETWORK;
BIOINFORMATICS;
COMPUTER PROGRAM;
DATA BASE;
EPITOPE MAPPING;
EVALUATION;
HUMAN IMMUNODEFICIENCY VIRUS 1;
HUMAN IMMUNODEFICIENCY VIRUS 2;
INTERMETHOD COMPARISON;
PREDICTION;
REVIEW;
T LYMPHOCYTE;
VALIDATION PROCESS;
ARTICLE;
BIOLOGY;
CHEMISTRY;
COMPARATIVE STUDY;
FORECASTING;
HUMAN;
HUMAN IMMUNODEFICIENCY VIRUS;
IMMUNOLOGY;
ISOLATION AND PURIFICATION;
METHODOLOGY;
MOLECULAR GENETICS;
SENSITIVITY AND SPECIFICITY;
COMPARATIVE STUDY;
COMPUTATIONAL BIOLOGY;
EPITOPES, T-LYMPHOCYTE;
FORECASTING;
HIV;
HIV ANTIGENS;
HUMAN;
MOLECULAR SEQUENCE DATA;
SENSITIVITY AND SPECIFICITY;
T-LYMPHOCYTES;
HUMANS;
HUMAN IMMUNODEFICIENCY VIRUS;
HUMAN IMMUNODEFICIENCY VIRUS 1;
HUMAN IMMUNODEFICIENCY VIRUS 2;
RNA VIRUSES;
|
EID: 0035989350
PISSN: 08189641
EISSN: None
Source Type: Journal
DOI: 10.1046/j.1440-1711.2002.01089.x Document Type: Review |
Times cited : (20)
|
References (31)
|