-
6
-
-
0000912612
-
-
T. M. Shaw, C.-K. Hu, K. Y. Lee, and R. Rosenberg, Appl. Phys. Lett. 67, 2296 (1995).
-
(1995)
Appl. Phys. Lett.
, vol.67
, pp. 2296
-
-
Shaw, T.M.1
Hu, C.-K.2
Lee, K.Y.3
Rosenberg, R.4
-
7
-
-
0002794534
-
-
J. Proost, A. Witvrouw, K. Maex, J. D'Haen, and P. Cosemans, J. Appl. Phys. 87, 86 (2000).
-
(2000)
J. Appl. Phys.
, vol.87
, pp. 86
-
-
Proost, J.1
Witvrouw, A.2
Maex, K.3
D'Haen, J.4
Cosemans, P.5
-
8
-
-
0344612634
-
-
H. H. Solak, G. F. Lorusso, S. Singh-Gasson, and F. Cerrina, Appl. Phys. Lett. 74, 22 (1999).
-
(1999)
Appl. Phys. Lett.
, vol.74
, pp. 22
-
-
Solak, H.H.1
Lorusso, G.F.2
Singh-Gasson, S.3
Cerrina, F.4
-
9
-
-
0033283638
-
-
H.-K. Kao, G. S. Cargill III, K. J. Hwang, A. C. Ho, P.-C. Wang, and C.-K. Hu, Mater. Res. Soc. Symp. Proc. 563, 163 (1999).
-
(1999)
Mater. Res. Soc. Symp. Proc.
, vol.563
, pp. 163
-
-
Kao, H.-K.1
Cargill G.S. III2
Hwang, K.J.3
Ho, A.C.4
Wang, P.-C.5
Hu, C.-K.6
-
10
-
-
0038930908
-
-
I. C. Noyan, P.-C. Wang, S. K. Kaldor, J. L. Jordan-Sweet, and E. G. Liniger, Rev. Sci. Instrum. 71, 1991 (2000).
-
(2000)
Rev. Sci. Instrum.
, vol.71
, pp. 1991
-
-
Noyan, I.C.1
Wang, P.-C.2
Kaldor, S.K.3
Jordan-Sweet, J.L.4
Liniger, E.G.5
-
11
-
-
0032621082
-
-
I. C. Noyan, P.-C. Wang, S. K. Kaldor, and J. L. Jordan-Sweet, Appl. Phys. Lett. 74, 2352 (1999).
-
(1999)
Appl. Phys. Lett.
, vol.74
, pp. 2352
-
-
Noyan, I.C.1
Wang, P.-C.2
Kaldor, S.K.3
Jordan-Sweet, J.L.4
-
13
-
-
0001274003
-
-
P.-C. Wang, I. C. Noyan, S. K. Kaldor, J. L. Jordan-Sweet, E. G. Liniger, and C.-K. Hu, Appl. Phys. Lett. 76, 3726 (2000).
-
(2000)
Appl. Phys. Lett.
, vol.76
, pp. 3726
-
-
Wang, P.-C.1
Noyan, I.C.2
Kaldor, S.K.3
Jordan-Sweet, J.L.4
Liniger, E.G.5
Hu, C.-K.6
-
14
-
-
0001127313
-
-
I. C. Noyan, J. Jordan-Sweet, E. G. Liniger, and S. K. Kaldor, Appl. Phys. Lett. 72, 3338 (1998).
-
(1998)
Appl. Phys. Lett.
, vol.72
, pp. 3338
-
-
Noyan, I.C.1
Jordan-Sweet, J.2
Liniger, E.G.3
Kaldor, S.K.4
-
15
-
-
0040708877
-
-
note
-
The maximum tensile stress near the cathode is on the order of 200 MPa, as previously reported for a passivated pure Al conductor line with similar configuration (see Ref. 16). A more accurate stress calibration will be reported in a separate paper.
-
-
-
-
16
-
-
0001127312
-
-
P.-C. Wang, G. S. Cargill III, I. C. Noyan, and C.-K. Hu, Appl. Phys. Lett. 72, 1296 (1998).
-
(1998)
Appl. Phys. Lett.
, vol.72
, pp. 1296
-
-
Wang, P.-C.1
Cargill G.S. III2
Noyan, I.C.3
Hu, C.-K.4
-
17
-
-
0040115101
-
-
note
-
The Si intensity scales with the magnitude of interfacial shear strain that results from the stress transfer between thin films and the underlying Si substrate. Therefore, the enhanced diffraction from Si can be due to either tensile stress or compressive stress in the films.
-
-
-
-
18
-
-
0038930907
-
-
note
-
The specimens were annealed at 300 °C for about an hour prior to the experiment, and the control sample stayed at 302 °C during the entire measurement. Therefore, the control sample is expected to be nearly stress free at the measurement due to stress relaxation.
-
-
-
-
19
-
-
0001427895
-
-
C. A. Ross, J. S. Drewery, R. E. Somekh, and J. E. Evetts, J. Appl. Phys. 66, 2349 (1989).
-
(1989)
J. Appl. Phys.
, vol.66
, pp. 2349
-
-
Ross, C.A.1
Drewery, J.S.2
Somekh, R.E.3
Evetts, J.E.4
-
20
-
-
0038930906
-
-
note
-
2 precipitates at the anode end were expected to dissolve during relaxation at 302 °C to maintain the equilibrium Cu concentration in the solution over the entire wire.
-
-
-
|