-
1
-
-
0032495519
-
-
D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abusch-Magder, U. Meirav, and M A. Kastner, Nature (London)391, 156 (1998);
-
(1998)
Nature (London)
, vol.391
, pp. 156
-
-
Goldhaber-Gordon, D.1
Shtrikman, H.2
Mahalu, D.3
Abusch-Magder, D.4
Meirav, U.5
Kastner, M.A.6
-
2
-
-
4243522360
-
-
D. Goldhaber-Gordon, J. Göres, M A. Kastner, H. Shtrikman, D. Mahalu, and U. Meirav, Phys. Rev. Lett.81, 5225 (1998).
-
(1998)
Phys. Rev. Lett.
, vol.81
, pp. 5225
-
-
Goldhaber-Gordon, D.1
Göres, J.2
Kastner, M.A.3
Shtrikman, H.4
Mahalu, D.5
Meirav, U.6
-
4
-
-
0032614514
-
-
F. Simmel, R H. Blick, J P. Kotthaus, W. Wegscheider, and M. Bichler, Phys. Rev. Lett.83, 804 (1999).
-
(1999)
Phys. Rev. Lett.
, vol.83
, pp. 804
-
-
Simmel, F.1
Blick, R.H.2
Kotthaus, J.P.3
Wegscheider, W.4
Bichler, M.5
-
5
-
-
0033717586
-
-
J. Schmid, J. Weis, K. Eberl, and K v. Klitzing, Phys. Rev. Lett.84, 5824 (2000).
-
(2000)
Phys. Rev. Lett.
, vol.84
, pp. 5824
-
-
Schmid, J.1
Weis, J.2
Eberl, K.3
Klitzing, K.v.4
-
6
-
-
0034703339
-
-
W G. van der Wiel, S. De Franceschi, T. Fujisawa, J M. Elzerman, S. Tarucha, and L P. Kouwenhoven, Science289, 2105 (2000).
-
(2000)
Science
, vol.289
, pp. 2105
-
-
van der Wiel, W.G.1
De Franceschi, S.2
Fujisawa, T.3
Elzerman, J.M.4
Tarucha, S.5
Kouwenhoven, L.P.6
-
10
-
-
0000273064
-
-
Pis’ma Zh. Éksp. Teor. Fiz., 378 (1988)
-
L I. Glazman and M.É. Raĭkh, Pis’ma Zh. Éksp. Teor. Fiz. 47, 378 (1988) [ JETP Lett.47, 452 (1988)].
-
(1988)
JETP Lett.
, vol.47
, pp. 452
-
-
Glazman, L.I.1
É, M.2
-
16
-
-
0034660411
-
-
S. Sasaki, S. De Franceschi, J M. Elzerman, W G. van der Wiel, M. Eto, S. Tarucha, and L P. Kouwenhoven, Nature (London)405, 764 (2000).
-
(2000)
Nature (London)
, vol.405
, pp. 764
-
-
Sasaki, S.1
De Franceschi, S.2
Elzerman, J.M.3
van der Wiel, W.G.4
Eto, M.5
Tarucha, S.6
Kouwenhoven, L.P.7
-
17
-
-
0346332115
-
-
S. Tarucha, D G. Austing, T. Honda, R J. van der Hage, and L P. Kouwenhoven, Phys. Rev. Lett.77, 3613 (1996).
-
(1996)
Phys. Rev. Lett.
, vol.77
, pp. 3613
-
-
Tarucha, S.1
Austing, D.G.2
Honda, T.3
van der Hage, R.J.4
Kouwenhoven, L.P.5
-
18
-
-
0030667406
-
-
L P. Kouwenhoven, T H. Oosterkamp, M W S. Danoesastro, M. Eto, D G. Austing, T. Honda, and S. Tarucha, Science278, 1788 (1997).
-
(1997)
Science
, vol.278
, pp. 1788
-
-
Kouwenhoven, L.P.1
Oosterkamp, T.H.2
Danoesastro, M.W.S.3
Eto, M.4
Austing, D.G.5
Honda, T.6
Tarucha, S.7
-
19
-
-
0000450915
-
-
T. Inoshita, A. Shimizu, Y. Kuramoto, and H. Sakaki, Phys. Rev. B48, R14725 (1993);
-
(1993)
Phys. Rev. B
, vol.48
, pp. R14725
-
-
Inoshita, T.1
Shimizu, A.2
Kuramoto, Y.3
Sakaki, H.4
-
21
-
-
0041195117
-
-
T. Pohjola, J. König, M M. Salomaa, J. Schmid, H. Schoeller, and G. Schön, Europhys. Lett.40, 189 (1997).
-
(1997)
Europhys. Lett.
, vol.40
, pp. 189
-
-
Pohjola, T.1
König, J.2
Salomaa, M.M.3
Schmid, J.4
Schoeller, H.5
Schön, G.6
-
30
-
-
85038921340
-
-
(private communications)
-
L P. Kouwenhoven (private communications).
-
-
-
Kouwenhoven, L.P.1
-
34
-
-
85038963460
-
-
This mean field theory is equivalent to the mean field theory using the slave bosons for (formula presented) Anderson model in the Kondo region (Ref. This method is exact in the large-(formula presented) limit when the dot state is, -fold degenerate
-
This mean field theory is equivalent to the mean field theory using the slave bosons for (formula presented) Anderson model in the Kondo region (Ref. 7). This method is exact in the large-(formula presented) limit when the dot state is N-fold degenerate.
-
-
-
-
37
-
-
85038944071
-
-
The different symmetry means different orbital quantum number for the one-electron states in a quantum dot. We consider the situation for vertical quantum dots where the orbital quantum number, is conserved in the tunneling processes between the dot and leads
-
The different symmetry means different orbital quantum number for the one-electron states in a quantum dot. We consider the situation for vertical quantum dots where the orbital quantum number i is conserved in the tunneling processes between the dot and leads.
-
-
-
-
38
-
-
85038961307
-
-
One finds that (formula presented) in the case of (formula presented), considering the matrix element of the Coulomb interaction between (formula presented) and (formula presented) (formula presented). In rectangular dots (Ref. the matrix element, is not zero and of the same order as the exchange interaction, (formula presented), and smaller than the Hartree term, (formula presented) (charging energy), typically by one order. In a case of (formula presented) (formula presented) and thus (formula presented) for (formula presented) (when the singlet and triplet states are degenerate, (formula presented)
-
One finds that (formula presented) in the case of (formula presented), considering the matrix element of the Coulomb interaction between (formula presented) and (formula presented) (formula presented). In rectangular dots (Ref. 14), the matrix element K is not zero and of the same order as the exchange interaction, (formula presented), and smaller than the Hartree term, (formula presented) (charging energy), typically by one order. In a case of (formula presented) (formula presented) and thus (formula presented) for (formula presented) (when the singlet and triplet states are degenerate, (formula presented).
-
-
-
-
41
-
-
85038946474
-
-
This result is different from that in Ref., which treats the situation of (formula presented) in Eq. (4). Their calculations might be better when (formula presented) is so large that (formula presented) (Ref. formula presented) increases with (formula presented). See discussion in Sec. V
-
This result is different from that in Ref. 25, which treats the situation of (formula presented) in Eq. (4). Their calculations might be better when (formula presented) is so large that (formula presented) (Ref. 35) (formula presented) increases with (formula presented). See discussion in Sec. V.
-
-
-
|