-
5
-
-
0020495095
-
-
(c) Janowicz, A. H.; Perima, R. A.; Buchanan, J. M.; Kovac, C. A.; Struker, J. M.; Wax, M. J.; Bergman, R. G. Pure Appl. Chem. 1984, 56, 13.
-
(1984)
Pure Appl. Chem.
, vol.56
, pp. 13
-
-
Janowicz, A.H.1
Perima, R.A.2
Buchanan, J.M.3
Kovac, C.A.4
Struker, J.M.5
Wax, M.J.6
Bergman, R.G.7
-
11
-
-
0003548222
-
-
VCH Publishers, Inc.: New York
-
(i) Davies, J. A.; Watson, P. L.; Liebman, J. F.; Greenberg, A. Selective Hydrocarbon Activation, Principles and Progress; VCH Publishers, Inc.: New York, 1990.
-
(1990)
Selective Hydrocarbon Activation, Principles and Progress
-
-
Davies, J.A.1
Watson, P.L.2
Liebman, J.F.3
Greenberg, A.4
-
16
-
-
0000313458
-
-
(n) Wasserman, E. P.; Moore, C. B.; Bergman, R. G. Science 1992, 255, 315.
-
(1992)
Science
, vol.255
, pp. 315
-
-
Wasserman, E.P.1
Moore, C.B.2
Bergman, R.G.3
-
18
-
-
0011564958
-
-
(p) Schroder, D.; Schwarz, H. Angew. Chem., Int. Ed. Engl. 1995, 34, 1937.
-
(1995)
Angew. Chem., Int. Ed. Engl.
, vol.34
, pp. 1937
-
-
Schroder, D.1
Schwarz, H.2
-
20
-
-
0000820085
-
-
(r) Amdtsen, B. A.; Bergman, R. G.; Mobley, T. A.; Peterson, T. H. Acc. Chem. Res. 1995, 28, 154.
-
(1995)
Acc. Chem. Res.
, vol.28
, pp. 154
-
-
Amdtsen, B.A.1
Bergman, R.G.2
Mobley, T.A.3
Peterson, T.H.4
-
23
-
-
0029810550
-
-
(u) Lohrenz, J. C.; Jacobsen, H. Angew. Chem., Int. Ed. Engl. 1996, 35, 1305.
-
(1996)
Angew. Chem., Int. Ed. Engl.
, vol.35
, pp. 1305
-
-
Lohrenz, J.C.1
Jacobsen, H.2
-
28
-
-
0000580987
-
-
(a) Torrent, M.; Sola, M.; Frenking, G. Chem. Rev. 2000, 100, 439.
-
(2000)
Chem. Rev.
, vol.100
, pp. 439
-
-
Torrent, M.1
Sola, M.2
Frenking, G.3
-
34
-
-
0001924093
-
-
The term ansa (meaning bent handle, attached at both hands) was first introduced with respect to metallocene chemistry by Brintzinger. See: Smith, J. A.; von Seyerl, J.; Huttner, G.; Brintzinger, H. H. J. Organomet. Chem. 1979, 173, 175.
-
(1979)
J. Organomet. Chem.
, vol.173
, pp. 175
-
-
Smith, J.A.1
Von Seyerl, J.2
Huttner, G.3
Brintzinger, H.H.4
-
35
-
-
0344894536
-
-
For recent reviews, see: (a) Nguyen, P.; Gomez-Elipe, P.; Manners, I. Chem. Rev. 1999, 99, 1515.
-
(1999)
Chem. Rev.
, vol.99
, pp. 1515
-
-
Nguyen, P.1
Gomez-Elipe, P.2
Manners, I.3
-
36
-
-
0029789545
-
-
(b) Hoveyda, A. H.; Morken, J. P. Angew. Chem., Int. Ed. Engl. 1996, 35, 1262.
-
(1996)
Angew. Chem., Int. Ed. Engl.
, vol.35
, pp. 1262
-
-
Hoveyda, A.H.1
Morken, J.P.2
-
40
-
-
37049107781
-
-
(a) Grebenik, M.; Downs, A. J.; Green, M. L. H.; Perutz, R. N. J. Chem. Soc., Chem. Commun. 1979, 742.
-
(1979)
J. Chem. Soc., Chem. Commun.
, pp. 742
-
-
Grebenik, M.1
Downs, A.J.2
Green, M.L.H.3
Perutz, R.N.4
-
41
-
-
0011632337
-
-
(b) Chetwynd-Talbot, J.; Grebnik, P.; Perutz, R. N. Inorg. Chem. 1982, 27, 3647.
-
(1982)
Inorg. Chem.
, vol.27
, pp. 3647
-
-
Chetwynd-Talbot, J.1
Grebnik, P.2
Perutz, R.N.3
-
42
-
-
0000904260
-
-
(c) Cox, P. A.; Grebenik, P.; Perutz, R. N.; Robinson, M. D.; Grinter, R.; Stern, D. R. Inorg. Chem. 1983, 22, 3614.
-
(1983)
Inorg. Chem.
, vol.22
, pp. 3614
-
-
Cox, P.A.1
Grebenik, P.2
Perutz, R.N.3
Robinson, M.D.4
Grinter, R.5
Stern, D.R.6
-
44
-
-
37049106892
-
-
(b) Cooper, N. J.; Green, M. L. H.; Mahtab, R. J. Chem. Soc., Dalton Trans. 1979, 1557.
-
(1979)
J. Chem. Soc., Dalton Trans.
, pp. 1557
-
-
Cooper, N.J.1
Green, M.L.H.2
Mahtab, R.3
-
45
-
-
37049111440
-
-
(c) Berry, M.; Elmitt, K.; Green, M. L. H. J. Chem. Soc., Dalton Trans. 1979, 1950.
-
(1979)
J. Chem. Soc., Dalton Trans.
, pp. 1950
-
-
Berry, M.1
Elmitt, K.2
Green, M.L.H.3
-
46
-
-
0347582650
-
-
(d) Berry, M.; Cooper, N. J.; Green, M. L. H.; Simpson, S. J. J. Chem. Soc., Dalton Trans. 1980, 29.
-
(1980)
J. Chem. Soc., Dalton Trans.
, pp. 29
-
-
Berry, M.1
Cooper, N.J.2
Green, M.L.H.3
Simpson, S.J.4
-
50
-
-
33748496024
-
-
(a) Conway, S. L. J.; Dijkstra, T.; Doerrer, L. H.; Green, J. C.; Green, M. L. H.; Stephens, A. H. H. J. Chem. Soc., Dalton Trans. 1998, 2689.
-
(1998)
J. Chem. Soc., Dalton Trans.
, pp. 2689
-
-
Conway, S.L.J.1
Dijkstra, T.2
Doerrer, L.H.3
Green, J.C.4
Green, M.L.H.5
Stephens, A.H.H.6
-
51
-
-
33748649094
-
-
(b) Cherenga, A.; Cook, J.; Green, M. L. H.; Labella, L.; Simpson, S. J.; Souter, J.; Stephens, A. H. H. J. Chem. Soc., Dalton Trans. 1997, 3225.
-
(1997)
J. Chem. Soc., Dalton Trans.
, pp. 3225
-
-
Cherenga, A.1
Cook, J.2
Green, M.L.H.3
Labella, L.4
Simpson, S.J.5
Souter, J.6
Stephens, A.H.H.7
-
53
-
-
85087579542
-
-
note
-
2}(Me)H]. For more details, see ref 15.
-
-
-
-
54
-
-
33646100675
-
-
note
-
(b) It has been demonstrated in ref 15 that the relative singlet-triplet energies in the two species are crucial in determining their relative stabilities.
-
-
-
-
58
-
-
0000874541
-
-
Ziegler, T.; Cheng, W.; Baerends, E. J.; Ravenek, W. Inorg. Chem. 1988, 27, 3458.
-
(1988)
Inorg. Chem.
, vol.27
, pp. 3458
-
-
Ziegler, T.1
Cheng, W.2
Baerends, E.J.3
Ravenek, W.4
-
67
-
-
33646107787
-
-
note
-
Suppose the formation of the σ-complex is at the triplet state; this means that it contains 18-electron at the triplet state. Therefore, one electron must go to the antibonding d orbital, which makes the σ-complex itself unstable and then easily get apart. Moreover, as far as we know the calculations about the σ-complex in ref 15, they did not fully optimized the triplet σ-complex, which made their statement doubtful. Indeed, we tried every possibility to fully optimized the triplet σ-complex using different theoretical methods but always failed. Therefore, we had calculated the single-point calculation for the triplet σ-complex using its singlet geometry, and we found that its energy is quite high (about 54 kcal/mol at the B3LYP/
-
-
-
-
68
-
-
33646082408
-
-
note
-
LANL2DZ level) compared to the singlet σ-complex. For these reasons, we believe that the oxidative addition reactions proceed on the singlet surface before the triplet σ-complex is formed. Consequently, it is reasonable to focus on the singlet surface.
-
-
-
-
75
-
-
0000856006
-
-
and references therein
-
Su, M.-D.; Chu, S.-Y. Inorg. Chem. 1998, 37, 3400 and references therein.
-
(1998)
Inorg. Chem.
, vol.37
, pp. 3400
-
-
Su, M.-D.1
Chu, S.-Y.2
-
76
-
-
0041363059
-
-
Bullock, R. M.; Headford, C. E. L.; Hennessy, K. M.; Kegley, S. E.; Norton, J. R. J. Am. Chem. Soc. 1989, 111, 3897.
-
(1989)
J. Am. Chem. Soc.
, vol.111
, pp. 3897
-
-
Bullock, R.M.1
Headford, C.E.L.2
Hennessy, K.M.3
Kegley, S.E.4
Norton, J.R.5
-
84
-
-
0345491105
-
-
(b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
-
(1988)
Phys. Rev. B
, vol.37
, pp. 785
-
-
Lee, C.1
Yang, W.2
Parr, R.G.3
-
86
-
-
0004133516
-
-
Gaussian, Inc.: Pittsburgh, PA
-
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian 94; Gaussian, Inc.: Pittsburgh, PA, 1995.
-
(1995)
Gaussian 94
-
-
Frisch, M.J.1
Trucks, G.W.2
Schlegel, H.B.3
Gill, P.M.W.4
Johnson, B.G.5
Robb, M.A.6
Cheeseman, J.R.7
Keith, T.8
Petersson, G.A.9
Montgomery, J.A.10
Raghavachari, K.11
Al-Laham, M.A.12
Zakrzewski, V.G.13
Ortiz, J.V.14
Foresman, J.B.15
Cioslowski, J.16
Stefanov, B.B.17
Nanayakkara, A.18
Challacombe, M.19
Peng, C.Y.20
Ayala, P.Y.21
Chen, W.22
Wong, M.W.23
Andres, J.L.24
Replogle, E.S.25
Gomperts, R.26
Martin, R.L.27
Fox, D.J.28
Binkley, J.S.29
Defrees, D.J.30
Baker, J.31
Stewart, J.P.32
Head-Gordon, M.33
Gonzalez, C.34
Pople, J.A.35
more..
-
89
-
-
0001869943
-
-
Schaefer, H. F., Ed., Plenum: New York
-
Dunning, T. H.; Hay, P. J. In Modern Theoretical Chemistry; Schaefer, H. F., Ed., Plenum: New York, 1976; pp 1-28.
-
(1976)
Modern Theoretical Chemistry
, pp. 1-28
-
-
Dunning, T.H.1
Hay, P.J.2
-
90
-
-
0003849456
-
-
Laird, A., Ross, R. B., Ziegler, T., Eds.; American Chemical Society: Washington, DC
-
It has to be emphasized that calculated DFT barrier heights are often, if anything, too low; see: Chemical Applications of Density Functional Theory; Laird, A., Ross, R. B., Ziegler, T., Eds.; American Chemical Society: Washington, DC, 1996. Thus, those barrier numbers might be underestimated by down to several kilocalories per mole. It is believed that using the more sphosticipated theory with larger basis sets should be essential. Nevertheless, the energies obtained at the B3LYP/ LANL2DZ level can, at least, provide the reliably qualitative conclusions.
-
(1996)
Chemical Applications of Density Functional Theory
-
-
|