-
1
-
-
0026433721
-
-
G. M. Whitesides, J. P. Mathias, and C. T. Seto, Science 254, 1312(1991); C. B. Murray, C. R. Kagan, and M. G. Bawendi, Science 270, 1335 (1995).
-
(1991)
Science
, vol.254
, pp. 1312
-
-
Whitesides, G.M.1
Mathias, J.P.2
Seto, C.T.3
-
2
-
-
0029404579
-
-
G. M. Whitesides, J. P. Mathias, and C. T. Seto, Science 254, 1312(1991); C. B. Murray, C. R. Kagan, and M. G. Bawendi, Science 270, 1335 (1995).
-
(1995)
Science
, vol.270
, pp. 1335
-
-
Murray, C.B.1
Kagan, C.R.2
Bawendi, M.G.3
-
3
-
-
0026107359
-
-
F. S. Bates, Science 251, 898 (1991); F. S. Bates and G. H. Fredrickson, Annu. Rev. Phys. Chem. 41, 525 (1990).
-
(1991)
Science
, vol.251
, pp. 898
-
-
Bates, F.S.1
-
5
-
-
1842289819
-
-
M. Park, C. Harrison, P. M. Chaikin, R. A. Register, and D. H. Adamson, Science 276, 1401 (1997).
-
(1997)
Science
, vol.276
, pp. 1401
-
-
Park, M.1
Harrison, C.2
Chaikin, P.M.3
Register, R.A.4
Adamson, D.H.5
-
6
-
-
0032027095
-
-
C. Harrison, M. Park, P. M. Chaikin, R. A. Register, and D. H. Adamson, J. Vac. Sci. Technol. B 16, 544 (1998).
-
(1998)
J. Vac. Sci. Technol. B
, vol.16
, pp. 544
-
-
Harrison, C.1
Park, M.2
Chaikin, P.M.3
Register, R.A.4
Adamson, D.H.5
-
7
-
-
0003171801
-
-
R. R. Li, P. D. Dapkus, M. E. Thompson, G. J. Weon, C. Harrison, P. M. Chaikin, R. A. Register, and D. H. Adamson, Appl. Phys. Lett. 76, 1689 (2000).
-
(2000)
Appl. Phys. Lett.
, vol.76
, pp. 1689
-
-
Li, R.R.1
Dapkus, P.D.2
Thompson, M.E.3
Weon, G.J.4
Harrison, C.5
Chaikin, P.M.6
Register, R.A.7
Adamson, D.H.8
-
10
-
-
0000525644
-
-
W. D. Volkmuth, T. Duke, M. C. Wu, R. H. Austin, and A. Szabo, Phys. Rev. Lett. 72, 2117 (1994).
-
(1994)
Phys. Rev. Lett.
, vol.72
, pp. 2117
-
-
Volkmuth, W.D.1
Duke, T.2
Wu, M.C.3
Austin, R.H.4
Szabo, A.5
-
13
-
-
0018545401
-
-
Various trilayer approaches have been previously developed and used in semiconductor processing. For example, see J. M. Moran and D. Maydan, J. Vac. Sci. Technol. 16, 1620 (1979); D. M. Tennant, L. D. Jackel, R. E. Howard, E. L. Hu, P. Grabbe, R. J. Capik, and B. S. Schneider, ibid. 19, 1304 (1981); P. Grabbe, E. L. Hu, and R. E. Howard, ibid. 21, 33 (1982); N. Gellrich, H. Beneking, and W. Arden, J. Vac. Sci. Technol. B 3, 335 (1985).
-
(1979)
J. Vac. Sci. Technol.
, vol.16
, pp. 1620
-
-
Moran, J.M.1
Maydan, D.2
-
14
-
-
0019636784
-
-
Various trilayer approaches have been previously developed and used in semiconductor processing. For example, see J. M. Moran and D. Maydan, J. Vac. Sci. Technol. 16, 1620 (1979); D. M. Tennant, L. D. Jackel, R. E. Howard, E. L. Hu, P. Grabbe, R. J. Capik, and B. S. Schneider, ibid. 19, 1304 (1981); P. Grabbe, E. L. Hu, and R. E. Howard, ibid. 21, 33 (1982); N. Gellrich, H. Beneking, and W. Arden, J. Vac. Sci. Technol. B 3, 335 (1985).
-
(1981)
J. Vac. Sci. Technol.
, vol.19
, pp. 1304
-
-
Tennant, D.M.1
Jackel, L.D.2
Howard, R.E.3
Hu, E.L.4
Grabbe, P.5
Capik, R.J.6
Schneider, B.S.7
-
15
-
-
0020129925
-
-
Various trilayer approaches have been previously developed and used in semiconductor processing. For example, see J. M. Moran and D. Maydan, J. Vac. Sci. Technol. 16, 1620 (1979); D. M. Tennant, L. D. Jackel, R. E. Howard, E. L. Hu, P. Grabbe, R. J. Capik, and B. S. Schneider, ibid. 19, 1304 (1981); P. Grabbe, E. L. Hu, and R. E. Howard, ibid. 21, 33 (1982); N. Gellrich, H. Beneking, and W. Arden, J. Vac. Sci. Technol. B 3, 335 (1985).
-
(1982)
J. Vac. Sci. Technol.
, vol.21
, pp. 33
-
-
Grabbe, P.1
Hu, E.L.2
Howard, R.E.3
-
16
-
-
0021117508
-
-
Various trilayer approaches have been previously developed and used in semiconductor processing. For example, see J. M. Moran and D. Maydan, J. Vac. Sci. Technol. 16, 1620 (1979); D. M. Tennant, L. D. Jackel, R. E. Howard, E. L. Hu, P. Grabbe, R. J. Capik, and B. S. Schneider, ibid. 19, 1304 (1981); P. Grabbe, E. L. Hu, and R. E. Howard, ibid. 21, 33 (1982); N. Gellrich, H. Beneking, and W. Arden, J. Vac. Sci. Technol. B 3, 335 (1985).
-
(1985)
J. Vac. Sci. Technol. B
, vol.3
, pp. 335
-
-
Gellrich, N.1
Beneking, H.2
Arden, W.3
-
17
-
-
0043093107
-
-
note
-
Olin Microelectronic Materials, Probimide 285, diluted to 3% solution in gamma butyrolactone. Adhesion promoter QZ 3289, diluted to 10% solution in de-ionized water/isopropanol (5/95).
-
-
-
-
18
-
-
0042592288
-
-
note
-
Insufficient solvent removal would result in the formation of bubbles at the silicon nitride film interface during the deposition at an elevated temperature, and eventually cause a rippled surface upon cooling.
-
-
-
-
19
-
-
0003679027
-
-
McGraw-Hill, New York
-
The silicon nitride layer was grown by a plasma enhanced chemical vapor deposition. See S. M. Sze, VLSI Technology, 2nd ed. (McGraw-Hill, New York, 1988), pp. 233-271.
-
(1988)
VLSI Technology, 2nd Ed.
, pp. 233-271
-
-
Sze, S.M.1
-
20
-
-
0030685421
-
-
Due to the discrete size of the microdomains, the thickness of the microdomain monolayer is also discrete. For our diblock copolymer, the monolayer thickness is 65 nm. By spin coating at this thickness, a uniform microdomain monolayer can be produced over the entire sample area. As seen in Fig. 1(a), there are PI wetting layers at the air and substrate interfaces ot the microdomain monolayer, the monolayer thickness includes these wetting layers. This arrangement has been verified by previous study. See Ref. 4 and M. Park, C. Harrison, P. M. Chaikin, R. A. Register, D. Adamson, and N. Yao, Mater. Res. Soc. Symp. Proc. 461, 179 (1997).
-
(1997)
Mater. Res. Soc. Symp. Proc.
, vol.461
, pp. 179
-
-
Park, M.1
Harrison, C.2
Chaikin, P.M.3
Register, R.A.4
Adamson, D.5
Yao, N.6
-
21
-
-
0041590319
-
-
note
-
2.
-
-
-
-
22
-
-
0043093103
-
-
note
-
A thicker nitride layer would require longer etching to clear holes through the layer. A long etch would widen the lateral dimension of the holes resulting in a loss of the hexagonal pattern due to collapsing of the holes unless a highly anisotropic etching is performed on the sample.
-
-
-
-
23
-
-
0043093106
-
-
note
-
So far, we have been unable to produce holes with a higher aspect ratio than three because of the lateral widening of the holes.
-
-
-
-
24
-
-
0041590322
-
-
note
-
A thin titanium layer was used as an adhesion layer.
-
-
-
-
25
-
-
0041590320
-
-
note
-
2 RIE. Otherwise, our result would have been unsuccessful.
-
-
-
-
26
-
-
0041590321
-
-
note
-
Any remaining thickness of the nitride layer prevents oxygen from etching the polyimide layer. Metals deposited over the incompletely etched polyimide layer are removed along with the lift-off mask.
-
-
-
-
28
-
-
3442880129
-
-
D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Phys. Rev. Lett. 49, 405 (1982): W. Kang, H. L. Stormer, L. N. Pfeiffer, K. W. Baldwin, and K. W. West, ibid. 71, 3850 (1993).
-
(1982)
Phys. Rev. Lett.
, vol.49
, pp. 405
-
-
Thouless, D.J.1
Kohmoto, M.2
Nightingale, M.P.3
Den Nijs, M.4
-
29
-
-
0041131727
-
-
D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Phys. Rev. Lett. 49, 405 (1982): W. Kang, H. L. Stormer, L. N. Pfeiffer, K. W. Baldwin, and K. W. West, ibid. 71, 3850 (1993).
-
(1993)
Phys. Rev. Lett.
, vol.71
, pp. 3850
-
-
Kang, W.1
Stormer, H.L.2
Pfeiffer, L.N.3
Baldwin, K.W.4
West, K.W.5
|