-
1
-
-
4444289857
-
-
H. Masuda and K. Fukuda, Science 268, 1466 (1995); R. Gupta, J. J. McClelland, Z. J. Jabbour, R. J. Celotta, Appl. Phys. Lett. 67, 1378 (1995); M. J. Lercel et al., J. Vac. Sci. Technol. B 13, 1139 (1995); M. Wendel, S. Kuhn, H. Lorenz, J. P. Kotthaus, M. Holland, Appl. Phys. Lett. 65, 1775 (1994); M. A. McCord and D. D. Awschalom, ibid. 57, 2153 (1990); H. Fang, R. Zeller, P. J. Stiles, ibid. 55, 1433 (1989).
-
(1995)
Science
, vol.268
, pp. 1466
-
-
Masuda, H.1
Fukuda, K.2
-
2
-
-
0029635430
-
-
H. Masuda and K. Fukuda, Science 268, 1466 (1995); R. Gupta, J. J. McClelland, Z. J. Jabbour, R. J. Celotta, Appl. Phys. Lett. 67, 1378 (1995); M. J. Lercel et al., J. Vac. Sci. Technol. B 13, 1139 (1995); M. Wendel, S. Kuhn, H. Lorenz, J. P. Kotthaus, M. Holland, Appl. Phys. Lett. 65, 1775 (1994); M. A. McCord and D. D. Awschalom, ibid. 57, 2153 (1990); H. Fang, R. Zeller, P. J. Stiles, ibid. 55, 1433 (1989).
-
(1995)
Appl. Phys. Lett.
, vol.67
, pp. 1378
-
-
Gupta, R.1
McClelland, J.J.2
Jabbour, Z.J.3
Celotta, R.J.4
-
3
-
-
0029309260
-
-
H. Masuda and K. Fukuda, Science 268, 1466 (1995); R. Gupta, J. J. McClelland, Z. J. Jabbour, R. J. Celotta, Appl. Phys. Lett. 67, 1378 (1995); M. J. Lercel et al., J. Vac. Sci. Technol. B 13, 1139 (1995); M. Wendel, S. Kuhn, H. Lorenz, J. P. Kotthaus, M. Holland, Appl. Phys. Lett. 65, 1775 (1994); M. A. McCord and D. D. Awschalom, ibid. 57, 2153 (1990); H. Fang, R. Zeller, P. J. Stiles, ibid. 55, 1433 (1989).
-
(1995)
J. Vac. Sci. Technol. B
, vol.13
, pp. 1139
-
-
Lercel, M.J.1
-
4
-
-
36448999924
-
-
H. Masuda and K. Fukuda, Science 268, 1466 (1995); R. Gupta, J. J. McClelland, Z. J. Jabbour, R. J. Celotta, Appl. Phys. Lett. 67, 1378 (1995); M. J. Lercel et al., J. Vac. Sci. Technol. B 13, 1139 (1995); M. Wendel, S. Kuhn, H. Lorenz, J. P. Kotthaus, M. Holland, Appl. Phys. Lett. 65, 1775 (1994); M. A. McCord and D. D. Awschalom, ibid. 57, 2153 (1990); H. Fang, R. Zeller, P. J. Stiles, ibid. 55, 1433 (1989).
-
(1994)
Appl. Phys. Lett.
, vol.65
, pp. 1775
-
-
Wendel, M.1
Kuhn, S.2
Lorenz, H.3
Kotthaus, J.P.4
Holland, M.5
-
5
-
-
36549095668
-
-
H. Masuda and K. Fukuda, Science 268, 1466 (1995); R. Gupta, J. J. McClelland, Z. J. Jabbour, R. J. Celotta, Appl. Phys. Lett. 67, 1378 (1995); M. J. Lercel et al., J. Vac. Sci. Technol. B 13, 1139 (1995); M. Wendel, S. Kuhn, H. Lorenz, J. P. Kotthaus, M. Holland, Appl. Phys. Lett. 65, 1775 (1994); M. A. McCord and D. D. Awschalom, ibid. 57, 2153 (1990); H. Fang, R. Zeller, P. J. Stiles, ibid. 55, 1433 (1989).
-
(1990)
Appl. Phys. Lett.
, vol.57
, pp. 2153
-
-
McCord, M.A.1
Awschalom, D.D.2
-
6
-
-
0000971198
-
-
H. Masuda and K. Fukuda, Science 268, 1466 (1995); R. Gupta, J. J. McClelland, Z. J. Jabbour, R. J. Celotta, Appl. Phys. Lett. 67, 1378 (1995); M. J. Lercel et al., J. Vac. Sci. Technol. B 13, 1139 (1995); M. Wendel, S. Kuhn, H. Lorenz, J. P. Kotthaus, M. Holland, Appl. Phys. Lett. 65, 1775 (1994); M. A. McCord and D. D. Awschalom, ibid. 57, 2153 (1990); H. Fang, R. Zeller, P. J. Stiles, ibid. 55, 1433 (1989).
-
(1989)
Appl. Phys. Lett.
, vol.55
, pp. 1433
-
-
Fang, H.1
Zeller, R.2
Stiles, P.J.3
-
8
-
-
0001032458
-
-
D. Hofstadter, Phys. Rev. B 14, 2239 (1976); D. J. Thouless, M. Kohmoto, M. P. Nightingale, M. den Nijs, Phys. Rev. Lett. 49, 405 (1982).
-
(1976)
Phys. Rev. B
, vol.14
, pp. 2239
-
-
Hofstadter, D.1
-
9
-
-
3442880129
-
-
D. Hofstadter, Phys. Rev. B 14, 2239 (1976); D. J. Thouless, M. Kohmoto, M. P. Nightingale, M. den Nijs, Phys. Rev. Lett. 49, 405 (1982).
-
(1982)
Phys. Rev. Lett.
, vol.49
, pp. 405
-
-
Thouless, D.J.1
Kohmoto, M.2
Nightingale, M.P.3
Den Nijs, M.4
-
11
-
-
0041131727
-
-
W. Kang, H. L. Stormer, L. N. Pfeiffer, K. W. Baldwin, K. W. West, ibid. 71, 3850 (1993).
-
(1993)
Phys. Rev. Lett.
, vol.71
, pp. 3850
-
-
Kang, W.1
Stormer, H.L.2
Pfeiffer, L.N.3
Baldwin, K.W.4
West, K.W.5
-
12
-
-
0026688439
-
-
W. D. Volkmuth and R. H. Austin, Nature 358, 600 (1992); W. D. Volkmuth, T. Duke, M. C. Wu, R. H. Austin, A. Szabo, Phys. Rev. Lett. 72, 2117 (1994).
-
(1992)
Nature
, vol.358
, pp. 600
-
-
Volkmuth, W.D.1
Austin, R.H.2
-
13
-
-
0000525644
-
-
W. D. Volkmuth and R. H. Austin, Nature 358, 600 (1992); W. D. Volkmuth, T. Duke, M. C. Wu, R. H. Austin, A. Szabo, Phys. Rev. Lett. 72, 2117 (1994).
-
(1994)
Phys. Rev. Lett.
, vol.72
, pp. 2117
-
-
Volkmuth, W.D.1
Duke, T.2
Wu, M.C.3
Austin, R.H.4
Szabo, A.5
-
14
-
-
36449002242
-
-
S. Y. Chou, M. S. Wei, P. R. Krauss, P. B. Fischer, J. Appl. Phys. 76, 6673 (1994).
-
(1994)
J. Appl. Phys.
, vol.76
, pp. 6673
-
-
Chou, S.Y.1
Wei, M.S.2
Krauss, P.R.3
Fischer, P.B.4
-
15
-
-
0029790896
-
-
T. L. Morkved et al., Science 273, 931 (1996).
-
(1996)
Science
, vol.273
, pp. 931
-
-
Morkved, T.L.1
-
16
-
-
21544461284
-
-
T. L. Morkved, P. Wiltzius, H. M. Jaeger, D. G. Grier, T. A. Witten, Appl. Phys. Lett. 64, 422 (1994).
-
(1994)
Appl. Phys. Lett.
, vol.64
, pp. 422
-
-
Morkved, T.L.1
Wiltzius, P.2
Jaeger, H.M.3
Grier, D.G.4
Witten, T.A.5
-
17
-
-
0012224964
-
-
P. Mansky, C. K. Harrison, P. M. Chaikin, R. A. Register, N. Yao, ibid. 68, 2586 (1996); P. Mansky, P. Chaikin, E. L. Thomas, J. Mater. Sci. 30, 1987 (1995).
-
(1996)
Appl. Phys. Lett.
, vol.68
, pp. 2586
-
-
Mansky, P.1
Harrison, C.K.2
Chaikin, P.M.3
Register, R.A.4
Yao, N.5
-
18
-
-
0029288162
-
-
P. Mansky, C. K. Harrison, P. M. Chaikin, R. A. Register, N. Yao, ibid. 68, 2586 (1996); P. Mansky, P. Chaikin, E. L. Thomas, J. Mater. Sci. 30, 1987 (1995).
-
(1995)
J. Mater. Sci.
, vol.30
, pp. 1987
-
-
Mansky, P.1
Chaikin, P.2
Thomas, E.L.3
-
20
-
-
0026107359
-
-
F. S. Bates, Science 251, 898 (1991); _ and G. H. Fredrickson, Annu. Rev. Phys. Chem. 41, 525 (1990).
-
(1991)
Science
, vol.251
, pp. 898
-
-
Bates, F.S.1
-
22
-
-
0003238922
-
-
McGraw-Hill, New York, ed. 2
-
The underlying silicon nitride layer is grown by a plasma-enhanced chemical vapor deposition technique. See S. M. Sze, VLSI Technology (McGraw-Hill, New York, ed. 2, 1988), pp. 233-271.
-
(1988)
VLSI Technology
, pp. 233-271
-
-
Sze, S.M.1
-
23
-
-
0030685421
-
-
Materials Research Society (MRS), Boston, 2 to 6 December 1996 MRS, Pittsburgh, PA
-
M. Park et al., in Symposium Proceedings, vol. 461, Morphological Control in Multiphase Polymer Mixtures, Materials Research Society (MRS), Boston, 2 to 6 December 1996 (MRS, Pittsburgh, PA, 1997), pp. 179-184.
-
(1997)
Symposium Proceedings, Vol. 461, Morphological Control in Multiphase Polymer Mixtures
, vol.461
, pp. 179-184
-
-
Park, M.1
-
24
-
-
0025406051
-
-
Because of the discrete microdomain size produced by self-assembly, spin-coated copolymer films on hard substrates rearrange into discrete film thicknesses upon annealing, which typically results in a nonuniform topography [see G. Coulon, D. Ausserre, T. P. Russell, J. Phys. France 51, 777 (1990)]. However, by spin-coating initially at these discrete thicknesses, a uniform film can be produced even after annealing.
-
(1990)
J. Phys. France
, vol.51
, pp. 777
-
-
Coulon, G.1
Ausserre, D.2
Russell, T.P.3
-
25
-
-
0040054291
-
-
McGraw-Hill, New York, ed. 2
-
S. M. Sze, VLSI Technology (McGraw-Hill, New York, ed. 2, 1988), pp. 184-232.
-
(1988)
VLSI Technology
, pp. 184-232
-
-
Sze, S.M.1
-
26
-
-
1842361487
-
-
note
-
DC. 18. We obtained the TEM micrographs by spin-coating the copolymer films on thin (∼75 nm) silicon nitride windows (50 μm by 50 μm) (Fig. 2). In this way, one can easily image the microdomain morphologies with the substrate intact before RIE and later directly view the patterned silicon nitride after RIE. The high-resolution TEM assists in characterizing and tuning the processing steps. Silicon nitride windows have been previously used in TEM micrography [see (8)]. Having a resolution and contrast of the image but not. significantly at the 10-nm length scale.
-
-
-
-
27
-
-
1842394335
-
-
note
-
The spherical microdomain monolayer shown in Fig. 2A is produced from SB 36/11, which exhibits a cylindrical morphology in bulk. A change from a cylindrical to a spherical morphology in thin films with a few nanometers of variation in film thickness has been observed and discussed previously (14). 20. The depth (or height) of the patterned structures is estimated from the etching times and rates (Figs. 2 and 3). In the case of the patterned silicon nitride layer on a silicon substrate in Fig. 3, the estimated number was confirmed by SEM on the cross section of a cracked sample.
-
-
-
-
28
-
-
1842285602
-
-
note
-
2 is used.
-
-
-
-
29
-
-
1842264079
-
-
note
-
We observed that the discreteness of the microdomain monolayer thickness was less apparent for SI 68/12 when compared with SB 36/11. Even at thicknesses below 70 nm, we observed spherical PI microdomains over the entire sample area but with a poorer order.
-
-
-
-
30
-
-
1842277759
-
-
in preparation
-
C. Harrison et al., in preparation.
-
-
-
Harrison, C.1
-
31
-
-
1842344864
-
-
note
-
We have produced a uniform microdomain monolayer template by spin-coating over an entire 76-mm wafer. With a larger ozonator system, the entire wafer would be patterned with the ordered nanostructure arrays.
-
-
-
-
32
-
-
1842304654
-
-
note
-
We thank P. Mansky for helpful discussions. This project was supported by NSF through the Princeton Center for Complex Materials under grant DMR 9400362. Parts of the processing were earned out at the Advanced Technology Center for Photonics and Optoelectronic Materials at Princeton University and at the Cornell Nanofabrication Center. The silicon nitride windows were fabricated at the Cornell Nanofabrication Center.
-
-
-
|