-
2
-
-
0032479044
-
-
Wenthold, P. G.; Squires, R. R.; Lineberger, W. C. J. Am. Chem. Soc. 1998, 120, 5279-5290.
-
(1998)
J. Am. Chem. Soc.
, vol.120
, pp. 5279-5290
-
-
Wenthold, P.G.1
Squires, R.R.2
Lineberger, W.C.3
-
3
-
-
33748224558
-
-
(a) Marquardt, R.; Sander, W.; Kraka, E. Angew. Chem. 1996, 35, 746-748.
-
(1996)
Angew. Chem.
, vol.35
, pp. 746-748
-
-
Marquardt, R.1
Sander, W.2
Kraka, E.3
-
4
-
-
0030829952
-
-
(b) Sander, W.; Bucher, G.; Wandel, H.; Kraka, E.; Cremer, D.; Sheldrick, W. S. J. Am. Chem. Soc. 1997, 119, 10 660-10 672.
-
(1997)
J. Am. Chem. Soc.
, vol.119
, pp. 10660-10672
-
-
Sander, W.1
Bucher, G.2
Wandel, H.3
Kraka, E.4
Cremer, D.5
Sheldrick, W.S.6
-
6
-
-
0006244148
-
-
Raghavachari, K.; Trucks, G. W.; Pople, J. A.; Head-Gorden, M. Chem. Phys. Lett. 1989, 157, 479-483.
-
(1989)
Chem. Phys. Lett.
, vol.157
, pp. 479-483
-
-
Raghavachari, K.1
Trucks, G.W.2
Pople, J.A.3
Head-Gorden, M.4
-
12
-
-
33749102543
-
-
Roth, W. R.; Hopf, H.; Wasser, T.; Zimmermann, H.; Werner, C. Liebigs Ann. 1996, 1691-1695.
-
(1996)
Liebigs Ann.
, pp. 1691-1695
-
-
Roth, W.R.1
Hopf, H.2
Wasser, T.3
Zimmermann, H.4
Werner, C.5
-
13
-
-
0011632298
-
-
note
-
The "uncoupling" of the singlet electron pair concerted with reaction can take the form of a transition from closed-shell singlet to open-shell singlet during the course of the reaction. This would produce the same net effect as intersystem crossing (i.e., allowing radical reactions) while conserving spin. The calculations of Reference 8 find singlet transition states for para-benzyne hydrogen atom abstraction that may imply such an open shelled singlet electronic structure.
-
-
-
-
14
-
-
0029759653
-
-
Chen, P. Angew. Chem. 1996, 35, 1478-1480.
-
(1996)
Angew. Chem.
, vol.35
, pp. 1478-1480
-
-
Chen, P.1
-
15
-
-
0034644418
-
-
Nelson, E. D.; Artau, A.; Price, J. P.; Tichy, S. E.; Kenttämaa, H. I. J. Am. Chem. Soc. 2000, 122, 8781-8782.
-
(2000)
J. Am. Chem. Soc.
, vol.122
, pp. 8781-8782
-
-
Nelson, E.D.1
Artau, A.2
Price, J.P.3
Tichy, S.E.4
Kenttämaa, H.I.5
-
17
-
-
0002572969
-
-
(a) Schweikhard, L.; Guan, S.; Marshall, A. G. Int. J. Mass Spectrom. Ion Processes 1992, 120, 71-83.
-
(1992)
Int. J. Mass Spectrom. Ion Processes
, vol.120
, pp. 71-83
-
-
Schweikhard, L.1
Guan, S.2
Marshall, A.G.3
-
18
-
-
0003145588
-
-
(b) Guan, S.; Xiang, X.; Marshall, A. G. Int. J. Mass Spectrom. Ion Processes 1993, 124, 53-67.
-
(1993)
Int. J. Mass Spectrom. Ion Processes
, vol.124
, pp. 53-67
-
-
Guan, S.1
Xiang, X.2
Marshall, A.G.3
-
21
-
-
0029819477
-
-
(c) Thoen, K. K.; Smith, R. L.; Nousiainen, J. J.; Nelson, E. D.; Kenttämaa, H. I. J. Am. Chem. Soc. 1996, 118, 8669-8676.
-
(1996)
J. Am. Chem. Soc.
, vol.118
, pp. 8669-8676
-
-
Thoen, K.K.1
Smith, R.L.2
Nousiainen, J.J.3
Nelson, E.D.4
Kenttämaa, H.I.5
-
22
-
-
0025780005
-
-
-5 Torr. For details of this method, see: Gauthier, J. W.; Trautman, T. R.; Jacobson, D. B. Analytics Chimica Acta 1991, 246, 211-245.
-
(1991)
Analytics Chimica Acta
, vol.246
, pp. 211-245
-
-
Gauthier, J.W.1
Trautman, T.R.2
Jacobson, D.B.3
-
23
-
-
11944255193
-
-
The carbon-bromine bond is sufficiently strong that an attempt to cleave bromine substituents with CAD can result in ion isomerization. For this reason, bromine substituents were only used to generate the second of the two meta-benzyne radical sites. The formation of the meta-benzyne moiety reduces the bond strength by ∼20 kcal/mol (see for example Blush et al. Acc. Chem. Res. 1992, 25, 385-392.), alleviating concerns of isomerization.
-
(1992)
Acc. Chem. Res.
, vol.25
, pp. 385-392
-
-
Blush1
-
24
-
-
0000838968
-
-
The dissipation of internal energy through IR emission by ions trapped in an FT-ICR has been shown to be quite rapid compared to the time scale of the present experiment. For more information on studies of IR emission rates by trapped ions see Dunbar, R. C. Mass Spectrom. Rev. 1992, 11, 309-339.
-
(1992)
Mass Spectrom. Rev.
, vol.11
, pp. 309-339
-
-
Dunbar, R.C.1
-
25
-
-
0000217255
-
-
Wang, T. C. L.; Rica, T. L. Marshall, A. G. Anal. Chem. 1986, 58, 2938.
-
(1986)
Anal. Chem.
, vol.58
, pp. 2938
-
-
Wang, T.C.L.1
Rica, T.L.2
Marshall, A.G.3
-
27
-
-
0001623018
-
-
(b) Chesnavich, W. J.; Su, T.; Bowers, M. T. J. Chem. Phys. 1980, 72, 2641-55.
-
(1980)
J. Chem. Phys.
, vol.72
, pp. 2641-2655
-
-
Chesnavich, W.J.1
Su, T.2
Bowers, M.T.3
-
28
-
-
0000712152
-
-
Leek, D. T.; Stirk, K. M.; Zeller, L. C.; Kiminkinen, L. K. M.; Castro, L. M.; Vainiotalo, P.; Kenttämaa, H. I. J. Am. Chem. Soc. 1994, 116, 3028.
-
(1994)
J. Am. Chem. Soc.
, vol.116
, pp. 3028
-
-
Leek, D.T.1
Stirk, K.M.2
Zeller, L.C.3
Kiminkinen, L.K.M.4
Castro, L.M.5
Vainiotalo, P.6
Kenttämaa, H.I.7
-
29
-
-
0002439211
-
-
Marinelli, P. J.; Paulino, J. A.; Sunderlin, L. S.; Wenthold, P. G.; Poutsma, J. C.; Squires, R. R. Int. J. Mass Spectrom. Ion Processes 1994, 130, 89-105.
-
(1994)
Int. J. Mass Spectrom. Ion Processes
, vol.130
, pp. 89-105
-
-
Marinelli, P.J.1
Paulino, J.A.2
Sunderlin, L.S.3
Wenthold, P.G.4
Poutsma, J.C.5
Squires, R.R.6
-
31
-
-
0001389439
-
-
Sunderlin, L. S.; Wang, D.; Squires, R. R. J. Am. Chem. Soc. 1993, 115, 12 060.
-
(1993)
J. Am. Chem. Soc.
, vol.115
, pp. 12060
-
-
Sunderlin, L.S.1
Wang, D.2
Squires, R.R.3
-
32
-
-
33845551664
-
-
(a) Ervin, K. M.; Loh, S. K.; Aristov, N.; Armentrout, P. B. J. Phys. Chem. 1989, 87, 3593.
-
(1989)
J. Phys. Chem.
, vol.87
, pp. 3593
-
-
Ervin, K.M.1
Loh, S.K.2
Aristov, N.3
Armentrout, P.B.4
-
34
-
-
2542638234
-
-
Schultz, R. H.; Crellin, K. C.; Armentrout, P. B. J. Am. Chem. Soc. 1991, 113, 8590.
-
(1991)
J. Am. Chem. Soc.
, vol.113
, pp. 8590
-
-
Schultz, R.H.1
Crellin, K.C.2
Armentrout, P.B.3
-
35
-
-
2542638234
-
-
(a) Schultz, R. H.; Crellin, K. C.; Armentrout, P. B. J. Am. Chem. Soc. 1991, 113, 8590.
-
(1991)
J. Am. Chem. Soc.
, vol.113
, pp. 8590
-
-
Schultz, R.H.1
Crellin, K.C.2
Armentrout, P.B.3
-
36
-
-
0031101986
-
-
(b) Rodgers, M. T.; Ervin, K. M.; Armentrout, P. B. J. Chem. Phys. 1997, 106, 4499.
-
(1997)
J. Chem. Phys.
, vol.106
, pp. 4499
-
-
Rodgers, M.T.1
Ervin, K.M.2
Armentrout, P.B.3
-
38
-
-
0004133516
-
-
Gaussian, Inc.: Pittsburgh, PA
-
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A. Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, Revision A.7; Gaussian, Inc.: Pittsburgh, PA, 1998.
-
(1998)
Gaussian 98, Revision A.7
-
-
Frisch, M.J.1
Trucks, G.W.2
Schlegel, H.B.3
Scuseria, G.E.4
Robb, M.A.5
Cheeseman, J.R.6
Zakrzewski, V.G.7
Montgomery Jr., J.A.8
Stratmann, R.E.9
Burant, J.C.10
Dapprich, S.11
Millam, J.M.12
Daniels, A.D.13
Kudin, K.N.14
Strain, M.C.15
Farkas, O.16
Tomasi, J.17
Barone, V.18
Cossi, M.19
Cammi, R.20
Mennucci, B.21
Pomelli, C.22
Adamo, C.23
Clifford, S.24
Ochterski, J.25
Petersson, G.A.26
Ayala, P.Y.27
Cui, Q.28
Morokuma, K.29
Malick, D.K.30
Rabuck, A.D.31
Raghavachari, K.32
Foresman, J.B.33
Cioslowski, J.34
Ortiz, J.V.35
Baboul, A.G.36
Stefanov, B.B.37
Liu, G.38
Liashenko, A.39
Piskorz, P.40
Komaromi, I.41
Gomperts, R.42
Martin, R.L.43
Fox, D.J.44
Keith, T.45
Al-Laham, M.A.46
Peng, C.Y.47
Nanayakkara, A.48
Gonzalez, C.49
Challacombe, M.50
Gill, P.M.W.51
Johnson, B.52
Chen, W.53
Wong, M.W.54
Andres, J.L.55
Gonzalez, C.56
Head-Gordon, M.57
Replogle, E.S.58
Pople, J.A.59
more..
-
40
-
-
0003363436
-
Ion Energetics Data
-
Mallard, W. G., Linstrom, P. J., Eds.; National Institute of Standards and Technology: Gaithersburg, MD, February
-
Lias, S. G.; Bartmess, J. E.; Liebman, J. F.; Holmes, J. L.; Levin, R. D.; Mallard, W. G. Ion Energetics Data In the NISTChemistry WebBook, NIST Standard Reference Database Number 69; Mallard, W. G., Linstrom, P. J., Eds.; National Institute of Standards and Technology: Gaithersburg, MD, February, 2000, 20 899 (http://webbook.nist.gov).
-
(2000)
The NISTChemistry WebBook, NIST Standard Reference Database Number 69
, pp. 20899
-
-
Lias, S.G.1
Bartmess, J.E.2
Liebman, J.F.3
Holmes, J.L.4
Levin, R.D.5
Mallard, W.G.6
-
41
-
-
0028789298
-
-
This is characteristic of gas-phase ion-molecule reactions. See for example, Brauman, J. I. J. Mass Spectrom. 1995, 30, 1649-1651.
-
(1995)
J. Mass Spectrom.
, vol.30
, pp. 1649-1651
-
-
Brauman, J.I.1
-
42
-
-
0011632305
-
-
note
-
- placed at the same relative positions as the centers of formal charge in the intermediate have a 21 D dipole moment at the same level of theory. Calculations at the HF/6-31+G(d) level of theory also predict a 9.8 D dipole moment for 9. However, density functional theory calculations predict a significantly lower value. For example, BLYP/6-31+G(d) calculations predict a dipole moment of only 2.38 D.
-
-
-
-
43
-
-
0028051146
-
-
(a) Campbell, S.; Rodgers, M. T.; Marzluff, E. M.; Beauchamp, J. L. J. Am. Chem. Soc. 1994, 116, 9765-9766.
-
(1994)
J. Am. Chem. Soc.
, vol.116
, pp. 9765-9766
-
-
Campbell, S.1
Rodgers, M.T.2
Marzluff, E.M.3
Beauchamp, J.L.4
-
44
-
-
6444229204
-
-
(b) Campbell, S.; Rodgers, M. T.; Marzluff, E. M.; Beauchamp, J. L. J. Am. Chem. Soc. 1995, 117, 12 840-12 854.
-
(1995)
J. Am. Chem. Soc.
, vol.117
, pp. 12840-12854
-
-
Campbell, S.1
Rodgers, M.T.2
Marzluff, E.M.3
Beauchamp, J.L.4
-
46
-
-
0001041828
-
-
(b) Jockusch, R. A.; Price, W. D.; Williams, E. R. J. Phys. Chem. A 1999, 103, 9266-9274.
-
(1999)
J. Phys. Chem. A
, vol.103
, pp. 9266-9274
-
-
Jockusch, R.A.1
Price, W.D.2
Williams, E.R.3
-
48
-
-
0034734359
-
-
(b) Wang, X. B.; Broadus, K. M.; Wang, L. S.; Kass, S. R. J. Am. Chem. Soc. 2000, 122, 8305-8306.
-
(2000)
J. Am. Chem. Soc.
, vol.122
, pp. 8305-8306
-
-
Wang, X.B.1
Broadus, K.M.2
Wang, L.S.3
Kass, S.R.4
-
50
-
-
0000892147
-
-
This estimate is based on the covalent bonding of 9 and its predicted 30 kcal/mol dissociation energy. Similar (and even much greater) lifetimes have been observed and theoretically predicted for covalently bound ion-molecule adducts. See for example: (a) Anicich, V. G.; Sen, A. D.; Huntress, W. T. Jr.; McEwan, M. J. J. Chem. Phys. 1991, 94, 4189-91.
-
(1991)
J. Chem. Phys.
, vol.94
, pp. 4189-4191
-
-
Anicich, V.G.1
Sen, A.D.2
Huntress Jr., W.T.3
McEwan, M.J.4
-
51
-
-
0000030206
-
-
(b) Anicich, V. G.; Sen, A. D.; McEwan, M. J.; Smith, S. C. J. Chem. Phys. 1994, 100, 5696-705.
-
(1994)
J. Chem. Phys.
, vol.100
, pp. 5696-5705
-
-
Anicich, V.G.1
Sen, A.D.2
McEwan, M.J.3
Smith, S.C.4
-
52
-
-
0011568475
-
-
Based on the collision rate predictions of the method of Reference 21
-
Based on the collision rate predictions of the method of Reference 21.
-
-
-
-
53
-
-
0011566941
-
-
note
-
This reaction was carried out in the central quadrupole rather than the flow tube to avoid confusion from an isomeric contaminant corresponding to an electrostatic cluster of the 4-tert-butylpyridinium trifluoroborate zwitterion and the N-(3,5-didehydrophenyl)-4-tert-butylpyridinium ion.
-
-
-
-
54
-
-
0033472766
-
-
(a) Hill, B. T.; Poutsma, J. C.; Chyall, L. J.; Hu, J.; Squires, R. R. J. Am. Soc. Mass Spectrom. 1999, 10, 896-906.
-
(1999)
J. Am. Soc. Mass Spectrom.
, vol.10
, pp. 896-906
-
-
Hill, B.T.1
Poutsma, J.C.2
Chyall, L.J.3
Hu, J.4
Squires, R.R.5
-
55
-
-
0029853376
-
-
(b) Wenthold, P. G.; Hu, J.; Squires, R. R. J. Am. Chem. Soc. 1996, 118, 11 865-11 871.
-
(1996)
J. Am. Chem. Soc.
, vol.118
, pp. 11865-11871
-
-
Wenthold, P.G.1
Hu, J.2
Squires, R.R.3
-
56
-
-
0011632306
-
-
note
-
5 as (alternately) the nucleophile or leaving group. The efficiencies measured in both cases agree to within the experimental error.
-
-
-
-
57
-
-
0011682031
-
-
note
-
- ions were placed at relative orientations corresponding to the centers of formal charge in the 3,5-bis(pyridinium)phenide intermediate suggest that this intermediate possesses approximately half (24 kcal/mol) of the ion-dipole stabilization energy of the salt bridged species with a relaxed geometry (i.e., 180° Li-F-Li angle).
-
-
-
-
58
-
-
0033104833
-
-
Shaik, S.; Shurki, A. Angew. Chem, Int. Ed. 1999, 38, 586-625, and references therein.
-
(1999)
Angew. Chem, Int. Ed.
, vol.38
, pp. 586-625
-
-
Shaik, S.1
Shurki, A.2
-
59
-
-
33750989420
-
-
The phenyl cation provides an approximation of the zwitterionic valence state of meta-benzyne. Addition of pyridine to the cationic moiety is a barrierless bond formation process
-
The phenyl cation provides an approximation of the zwitterionic valence state of meta-benzyne. Addition of pyridine to the cationic moiety is a barrierless bond formation process.
-
-
-
-
60
-
-
0011672450
-
-
note
-
Neon serves as an approximation of the size and electrostatic effect of a nitrogen atom. The biradical electron pair of meta-benzyne is polarized by electrostatic repulsion from the neon electron cloud without the formation of a chemical bond.
-
-
-
-
61
-
-
0031563676
-
-
The reverse of this reaction, CAD of 3-chlorophenide to form chloride and meta-benzyne, was used to measure the heat of formation of meta-benzyne by Wenthold et al. (Reference 1) and appears to be in good agreement with high-level theoretical calculations (Cramer, et al. Chem. Phys. Lett. 1997, 277, 311-320 and references therein).
-
(1997)
Chem. Phys. Lett.
, vol.277
, pp. 311-320
-
-
Cramer1
-
62
-
-
0033961888
-
-
(a) Heidbrink, J. L.; Thoen, K. K.; Kenttämaa, H. I. J. Org. Chem. 2000, 65, 645-651.
-
(2000)
J. Org. Chem.
, vol.65
, pp. 645-651
-
-
Heidbrink, J.L.1
Thoen, K.K.2
Kenttämaa, H.I.3
-
63
-
-
0035917356
-
-
(b) Tichy, S. E.; Thoen, K. K.; Price, J. M.; Ferra, J. J., Jr.; Petucci, C. J.; Kenttämaa, H. I. J. Org. Chem. 2001, 66, 2726-2733.
-
(2001)
J. Org. Chem.
, vol.66
, pp. 2726-2733
-
-
Tichy, S.E.1
Thoen, K.K.2
Price, J.M.3
Ferra Jr., J.J.4
Petucci, C.J.5
Kenttämaa, H.I.6
-
72
-
-
0011571859
-
-
Based on BLYP/6-31+G(d) calculations of the nonfluorosubstituted analogues
-
Based on BLYP/6-31+G(d) calculations of the nonfluorosubstituted analogues.
-
-
-
-
73
-
-
33750985740
-
-
Such species may, however, be subject to substitution by electrophiles, and further research will address this possibility
-
Such species may, however, be subject to substitution by electrophiles, and further research will address this possibility.
-
-
-
-
74
-
-
0000309470
-
-
Kim, S. S.; Yang, K. W.; Lee, C. S. J. Org. Chem. 1996, 61, 4827-4829.
-
(1996)
J. Org. Chem.
, vol.61
, pp. 4827-4829
-
-
Kim, S.S.1
Yang, K.W.2
Lee, C.S.3
-
75
-
-
0032125865
-
-
It is assumed that the charged moiety has no profound effect on the singlet-triplet gap of the meta-benzyne moiety. This is consistent with recent computational studies (Cramer, C. J. J. Am. Chem. Soc. 1998, 120, 6261-6269.
-
(1998)
J. Am. Chem. Soc.
, vol.120
, pp. 6261-6269
-
-
Cramer, C.J.1
-
76
-
-
0032065461
-
-
Cramer, C. J.; Debbert, S. Chem. Phys. Lett. 1998, 287, 320-326.) that predict that didehydropyridinium ions possess singlet-triplet gaps only slightly perturbed from that of the analogous benzyne.
-
(1998)
Chem. Phys. Lett.
, vol.287
, pp. 320-326
-
-
Cramer, C.J.1
Debbert, S.2
-
77
-
-
0031553263
-
-
We have confirmed this for the species discussed in this paper by using the hyperfine coupling method of Cramer, et al. (J. Phys. Chem. A 1997, 101, 9191-9194.).
-
(1997)
J. Phys. Chem. A
, vol.101
, pp. 9191-9194
-
-
Cramer1
-
78
-
-
33847090403
-
-
The double-well potential energy surface characteristic of ion-molecule reactions can often result in the transition state lying below the reactants in energy (e.g., Figure 2). In effect, the thermal energy of the system is augmented by electrostatic ion-molecule solvation energy that helps to overcome the chemical barrier. This can often result in faster reactions than are observed for neutral species. However, the relative reaction rates of ion-molecule reactions are affected by perturbations in the barrier height in a manner roughly analogous to neutral species (i.e., directly proportional to the ratio of the sums of states above each transition state). See for example: (a) Olmsteadm, W. N.; Brauman, J. I. J. Am. Chem. Soc. 1977, 99, 4219-4228.
-
(1977)
J. Am. Chem. Soc.
, vol.99
, pp. 4219-4228
-
-
Olmsteadm, W.N.1
Brauman, J.I.2
-
79
-
-
0000939251
-
-
(b) Wilbur, J. L.; Wladkowski, B. D.; Brauman, J. I. J. Am. Chem. Soc. 1993, 115, 10 823-10 829.
-
(1993)
J. Am. Chem. Soc.
, vol.115
, pp. 10823-10829
-
-
Wilbur, J.L.1
Wladkowski, B.D.2
Brauman, J.I.3
-
80
-
-
0002721731
-
-
186
-
This sort of two-step reaction has been observed previously with tert-butyl isocyanide. See for example: (a) Nelson, E. D.; Li, R.; Kenttämaa, H. I. Int. J. Mass Spectrom. 1998, 185/186/187, 91-96.
-
(1998)
Int. J. Mass Spectrom.
, vol.185-187
, pp. 91-96
-
-
Nelson, E.D.1
Li, R.2
Kenttämaa, H.I.3
-
81
-
-
0032557194
-
-
(b) Nelson, E. D.; Thoen, K. K.; Kenttämaa, H. I. J. Am. Chem. Soc. 1998, 120, 3792-3798.
-
(1998)
J. Am. Chem. Soc.
, vol.120
, pp. 3792-3798
-
-
Nelson, E.D.1
Thoen, K.K.2
Kenttämaa, H.I.3
-
82
-
-
0011686902
-
-
note
-
Homolytic dissociation is estimated to be ∼0 kcal/mol more exothermic than heterolytic dissociation based on IE and EA values from References 32 and 54. However, homolytic dissociation is presumably accompanied by a barrier, and it is unclear whether a direct or two-step process takes place.
-
-
-
|