메뉴 건너뛰기




Volumn 27, Issue 6, 2001, Pages 806-815

Generalization theory and generalization methods for neural networks

Author keywords

Generalization ability; Generalization methods; Generalization theory; Neural networks

Indexed keywords

ALGORITHMS; CONVERGENCE OF NUMERICAL METHODS; MULTILAYER NEURAL NETWORKS; SAMPLING; TOPOLOGY;

EID: 0035502804     PISSN: 02544156     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (37)

References (67)
  • 1
    • 0006169007 scopus 로고    scopus 로고
    • Chinese source
  • 2
    • 0006221023 scopus 로고    scopus 로고
    • Chinese source
  • 3
    • 0006249256 scopus 로고    scopus 로고
    • Chinese source
  • 7
    • 0002127281 scopus 로고
    • What size net gives valid generalization
    • NISPS 1, San Mateo, CA
    • (1989) , pp. 81-90
    • Baum, E.B.1    Haussler, D.2
  • 9
    • 84899033881 scopus 로고
    • Generalization in feedforward networks
    • NIPS 7, Cambridge, MA
    • (1995) , pp. 215-222
    • Kowalczyk, A.1    Ferra, H.2
  • 10
    • 85153937502 scopus 로고
    • Sample size requirements for feedforward neural networks
    • NIPS 7, Cambridge, MA
    • (1995) , pp. 327-334
    • Turmon, M.J.1    Fine, T.L.2
  • 11
    • 85156276965 scopus 로고    scopus 로고
    • Neural networks with quadratic VC-dimension
    • NISP 8, Cambridge, MA
    • (1996) , pp. 197-203
    • Koiran, P.1    Sontag, E.D.2
  • 14
    • 0006167061 scopus 로고
    • MLP can provably generalize much better than VC-bound indicate
    • NIPS 9, Cambridge, MA
    • (1995) , pp. 190-196
    • Kowalczyk, A.1    Ferra, H.2
  • 15
    • 24844439273 scopus 로고
    • For valid generalization, the size of the weight is more important than the size of the network
    • NIPS 9, Cambridge, MA
    • (1995) , pp. 134-140
    • Bartlett, P.L.1
  • 16
    • 0003518213 scopus 로고
    • The effective number of parameters: An analysis of generalization and regularization in nonlinear learning system
    • NIPS 4, San Mateo, CA
    • (1992) , pp. 847-854
    • Moody, J.E.1
  • 19
    • 0000482137 scopus 로고    scopus 로고
    • On the relationship between generalization error, hypothesis complexity, and sample complexity for radial basis function
    • (1996) Neural Computation , Issue.8 , pp. 819-842
    • Niyogo, P.1    Girosi, F.2
  • 23
    • 0006257311 scopus 로고
    • A method of learning from Hints
    • NIPS 5, San Matco, CA
    • (1993) , pp. 73-80
    • Abu-Mostafa, Y.S.1
  • 31
    • 0003922549 scopus 로고
    • Back propagation is sensitive to initial conditions
    • NIPS 3, San Mateo, CA
    • (1991) , pp. 860-867
    • Kolen, J.F.1    Pollack, J.B.2
  • 35
    • 0006212914 scopus 로고    scopus 로고
    • Japanese source
  • 36
    • 0001927486 scopus 로고
    • Temporal evolution of generalization during learning in linear networks
    • (1991) Neural Computation , Issue.3 , pp. 589-603
    • Baldi, P.1
  • 37
    • 2642652366 scopus 로고
    • Generalization dynamics in LMS trained linear network
    • NIPS 3, San Mateo, CA
    • (1991) , pp. 890-896
    • Chauvin, Y.1
  • 38
    • 0000487861 scopus 로고
    • Optimal stopping and effective machine complexity in learning
    • NIPS 6, San Mateo, CA
    • (1994) , pp. 303-310
    • Wang, C.1    Venkatesh, S.S.2
  • 39
    • 85153937886 scopus 로고
    • Temporal dynamics of generalization in neural networks
    • NIPS 7, Cambridge, MA
    • (1995) , pp. 263-270
    • Wang, C.1    Venkatesh, S.S.2
  • 44
    • 0006178951 scopus 로고    scopus 로고
    • Japanese source
  • 45
    • 0006176575 scopus 로고    scopus 로고
    • Chinese source
  • 50
    • 2342565172 scopus 로고    scopus 로고
    • The effect of adding noise during backpropagation training on a generalization performance
    • (1996) Neural Computation , Issue.8 , pp. 643-671
    • An, G.1
  • 52
    • 0000494468 scopus 로고
    • Synergy of clustering multiple back propagation networks
    • NIPS 2, San Mateo, CA
    • (1990) , pp. 650-657
    • Lincoln, W.L.1    Skrzypek, J.2
  • 54
    • 0006167062 scopus 로고    scopus 로고
    • Japanese source
  • 57
    • 4944251909 scopus 로고
    • Financial application of learning from hints
    • NIPS 7, Cambridge, MA
    • (1995) , pp. 411-418
    • Abu-Mostafa, Y.S.1
  • 64
    • 0000900996 scopus 로고    scopus 로고
    • A bound on the error of cross validation using the approximation and estimation rates, with consequences for the training-test split
    • (1997) Neural Computation , Issue.9 , pp. 1143-1161
    • Kearns, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.