-
3
-
-
0001749949
-
-
Many calculations of quantum confinement in silicon nanowires exist. See, for example, F. Buda, J. Kohanoff, M. Parrinello, Phys. Rev. Lett. 69, 1272 (1992); A. J. Read et al., Phys. Rev. Lett. 69, 1232 (1992); G. D. Sanders and Y.-C. Chang, Phys. Rev. B 45, 9202 (1992); M.-Y. Shen and S.-L. Zhang, Phys. Lett. A 176, 254 (1993); C.-Y. Yeh, S. B. Zhang, A. Zunger, Phys. Rev. B 50, 14405 (1994); and references therein.
-
(1992)
Phys. Rev. Lett.
, vol.69
, pp. 1272
-
-
Buda, F.1
Kohanoff, J.2
Parrinello, M.3
-
4
-
-
11944274490
-
-
Many calculations of quantum confinement in silicon nanowires exist. See, for example, F. Buda, J. Kohanoff, M. Parrinello, Phys. Rev. Lett. 69, 1272 (1992); A. J. Read et al., Phys. Rev. Lett. 69, 1232 (1992); G. D. Sanders and Y.-C. Chang, Phys. Rev. B 45, 9202 (1992); M.-Y. Shen and S.-L. Zhang, Phys. Lett. A 176, 254 (1993); C.-Y. Yeh, S. B. Zhang, A. Zunger, Phys. Rev. B 50, 14405 (1994); and references therein.
-
(1992)
Phys. Rev. Lett.
, vol.69
, pp. 1232
-
-
Read, A.J.1
-
5
-
-
0000302596
-
-
Many calculations of quantum confinement in silicon nanowires exist. See, for example, F. Buda, J. Kohanoff, M. Parrinello, Phys. Rev. Lett. 69, 1272 (1992); A. J. Read et al., Phys. Rev. Lett. 69, 1232 (1992); G. D. Sanders and Y.-C. Chang, Phys. Rev. B 45, 9202 (1992); M.-Y. Shen and S.-L. Zhang, Phys. Lett. A 176, 254 (1993); C.-Y. Yeh, S. B. Zhang, A. Zunger, Phys. Rev. B 50, 14405 (1994); and references therein.
-
(1992)
Phys. Rev. B
, vol.45
, pp. 9202
-
-
Sanders, G.D.1
Chang, Y.-C.2
-
6
-
-
0001745318
-
-
Many calculations of quantum confinement in silicon nanowires exist. See, for example, F. Buda, J. Kohanoff, M. Parrinello, Phys. Rev. Lett. 69, 1272 (1992); A. J. Read et al., Phys. Rev. Lett. 69, 1232 (1992); G. D. Sanders and Y.-C. Chang, Phys. Rev. B 45, 9202 (1992); M.-Y. Shen and S.-L. Zhang, Phys. Lett. A 176, 254 (1993); C.-Y. Yeh, S. B. Zhang, A. Zunger, Phys. Rev. B 50, 14405 (1994); and references therein.
-
(1993)
Phys. Lett. A
, vol.176
, pp. 254
-
-
Shen, M.-Y.1
Zhang, S.-L.2
-
7
-
-
35949006566
-
-
and references therein
-
Many calculations of quantum confinement in silicon nanowires exist. See, for example, F. Buda, J. Kohanoff, M. Parrinello, Phys. Rev. Lett. 69, 1272 (1992); A. J. Read et al., Phys. Rev. Lett. 69, 1232 (1992); G. D. Sanders and Y.-C. Chang, Phys. Rev. B 45, 9202 (1992); M.-Y. Shen and S.-L. Zhang, Phys. Lett. A 176, 254 (1993); C.-Y. Yeh, S. B. Zhang, A. Zunger, Phys. Rev. B 50, 14405 (1994); and references therein.
-
(1994)
Phys. Rev. B
, vol.50
, pp. 14405
-
-
Yeh, C.-Y.1
Zhang, S.B.2
Zunger, A.3
-
9
-
-
0347911826
-
-
J. W. Mintmire, B. I. Dunlap, C. T. White, Phys. Rev. Lett. 68, 631 (1992); N. Hamada, S.-I. Sawada, A. Oshiyama, Phys. Rev. Lett. 68, 1579 (1992).
-
(1992)
Phys. Rev. Lett.
, vol.68
, pp. 631
-
-
Mintmire, J.W.1
Dunlap, B.I.2
White, C.T.3
-
10
-
-
11744334526
-
-
J. W. Mintmire, B. I. Dunlap, C. T. White, Phys. Rev. Lett. 68, 631 (1992); N. Hamada, S.-I. Sawada, A. Oshiyama, Phys. Rev. Lett. 68, 1579 (1992).
-
(1992)
Phys. Rev. Lett.
, vol.68
, pp. 1579
-
-
Hamada, N.1
Sawada, S.-I.2
Oshiyama, A.3
-
13
-
-
0029484212
-
-
T. J. Trentler et al., Science 270, 1791 (1995); T. J. Trentler et al., J. Am. Chem. Soc. 119, 2172 (1997); J. R. Heath, Chem. Phys. Lett. 208, 263 (1993).
-
(1995)
Science
, vol.270
, pp. 1791
-
-
Trentler, T.J.1
-
14
-
-
0030992465
-
-
T. J. Trentler et al., Science 270, 1791 (1995); T. J. Trentler et al., J. Am. Chem. Soc. 119, 2172 (1997); J. R. Heath, Chem. Phys. Lett. 208, 263 (1993).
-
(1997)
J. Am. Chem. Soc.
, vol.119
, pp. 2172
-
-
Trentler, T.J.1
-
15
-
-
0000375460
-
-
T. J. Trentler et al., Science 270, 1791 (1995); T. J. Trentler et al., J. Am. Chem. Soc. 119, 2172 (1997); J. R. Heath, Chem. Phys. Lett. 208, 263 (1993).
-
(1993)
Chem. Phys. Lett.
, vol.208
, pp. 263
-
-
Heath, J.R.1
-
17
-
-
0037912948
-
-
and references therein
-
For example, see J. Westwater, D. P. Gosain, S. Tomiya, S. Usui, H. Ruda, J. Vac. Sci. Technol. B 15, 554 (1997) and references therein.
-
(1997)
J. Vac. Sci. Technol. B
, vol.15
, pp. 554
-
-
Westwater, J.1
Gosain, D.P.2
Tomiya, S.3
Usui, S.4
Ruda, H.5
-
18
-
-
0032498174
-
-
A. M. Morales and C. M. Lieber, Science 279, 208 (1998); Y. F. Zhang et al., Appl. Phys. Lett. 72, 1835 (1998).
-
(1998)
Science
, vol.279
, pp. 208
-
-
Morales, A.M.1
Lieber, C.M.2
-
19
-
-
0000454104
-
-
A. M. Morales and C. M. Lieber, Science 279, 208 (1998); Y. F. Zhang et al., Appl. Phys. Lett. 72, 1835 (1998).
-
(1998)
Appl. Phys. Lett.
, vol.72
, pp. 1835
-
-
Zhang, Y.F.1
-
20
-
-
0342849276
-
-
note
-
3) equipped with a stainless steel piston. A high-pressure liquid chromatography pump (LDC Analytical) was used to pump deionized water into the back of the piston and displace oxygen-free anhydrous hexane through an inlet heat exchanger and into the reaction cell to the desired pressure of either 200 or 270 bar. The cell was covered with heating tape (0.6 m) and heated to 500°C (±0.2 °C) using a platinum resistance thermometer and a temperature controller. The reaction proceeded at these conditions for 1 hour.
-
-
-
-
21
-
-
37049074842
-
-
The dodecanethiol-capped Au nanocrystals were formed using the procedures outlined in M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, R. Whyman, J. Chem. Soc. Chem. Commun. 1994, 801 (1994); B. A. Korgel and D. Fitzmaurice, Phys. Rev. Lett. 80, 3531 (1998). The nanocrystals had a mean diameter of 25 Å with a SD about the mean of ±20%.
-
(1994)
J. Chem. Soc. Chem. Commun.
, vol.1994
, pp. 801
-
-
Brust, M.1
Walker, M.2
Bethell, D.3
Schiffrin, D.J.4
Whyman, R.5
-
22
-
-
0000058388
-
-
The dodecanethiol-capped Au nanocrystals were formed using the procedures outlined in M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, R. Whyman, J. Chem. Soc. Chem. Commun. 1994, 801 (1994); B. A. Korgel and D. Fitzmaurice, Phys. Rev. Lett. 80, 3531 (1998). The nanocrystals had a mean diameter of 25 Å with a SD about the mean of ±20%.
-
(1998)
Phys. Rev. Lett.
, vol.80
, pp. 3531
-
-
Korgel, B.A.1
Fitzmaurice, D.2
-
24
-
-
0342414372
-
-
note
-
XPS revealed that the samples consisted of less than 0.1% Au, with ratios of Si:O of 2:1 and Si:C of 1:3. The relatively high concentrations of carbon and oxygen stem from the fact that the volume of the ∼40 Å thick coating of carbon and oxygen surrounding the 40 Å diameter wire has a volume three times that of the silicon core.
-
-
-
-
25
-
-
0008813837
-
-
M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, C. Delerue, Phys. Rev. Lett. 82, 197 (1999).
-
(1999)
Phys. Rev. Lett.
, vol.82
, pp. 197
-
-
Wolkin, M.V.1
Jorne, J.2
Fauchet, P.M.3
Allan, G.4
Delerue, C.5
-
26
-
-
0343719482
-
-
note
-
K.P.J. thanks the U.S. Department of Energy and NSF for support. B.A.K. thanks DuPont for support through a Young Professor Grant.
-
-
-
|