메뉴 건너뛰기




Volumn 83, Issue 11, 2000, Pages 2393-2409

Modeling of pH and acidity for industrial cheese production

Author keywords

Acidity; Cheese data modeling; Neural networks; pH

Indexed keywords

ARTICLE; ARTIFICIAL NEURAL NETWORK; BIOTECHNOLOGY; CHEESE; FOOD HANDLING; METHODOLOGY; PH;

EID: 0034330577     PISSN: 00220302     EISSN: None     Source Type: Journal    
DOI: 10.3168/jds.S0022-0302(00)75129-0     Document Type: Article
Times cited : (31)

References (44)
  • 1
    • 0031823888 scopus 로고    scopus 로고
    • Static and dynamic neural network models for estimating biomass concentration during thermophilic lactic acid bacteria batch cultures
    • Acuña, G., E. Latrille, C. Béal, and G. Corrieu. 1998. Static and dynamic neural network models for estimating biomass concentration during thermophilic lactic acid bacteria batch cultures. J. Ferm. Bioeng. 85:615-622.
    • (1998) J. Ferm. Bioeng. , vol.85 , pp. 615-622
    • Acuña, G.1    Latrille, E.2    Béal, C.3    Corrieu, G.4
  • 2
    • 0033105287 scopus 로고    scopus 로고
    • Model selection in neural networks
    • Anders, U., and O. Korn. 1999. Model selection in neural networks. Neural Networks 12:309-323.
    • (1999) Neural Networks , vol.12 , pp. 309-323
    • Anders, U.1    Korn, O.2
  • 3
    • 0000334686 scopus 로고
    • How to develop neural networks
    • June
    • Bailey, D., and D. Thompson. 1990. How to develop neural networks. AI Expert June:38-47.
    • (1990) AI Expert , pp. 38-47
    • Bailey, D.1    Thompson, D.2
  • 4
    • 0026531210 scopus 로고
    • Artificial neural networks as a tool for soft-modeling in quantitative analytical chemistry: The prediction of the water content of the cheese
    • Bos, A., M. Bos, and W. E. van der Linden. 1992. Artificial neural networks as a tool for soft-modeling in quantitative analytical chemistry: the prediction of the water content of the cheese. Anal. Chim. Acta 256:133-144.
    • (1992) Anal. Chim. Acta , vol.256 , pp. 133-144
    • Bos, A.1    Bos, M.2    Van Der Linden, W.E.3
  • 6
    • 0032205695 scopus 로고    scopus 로고
    • Static neural network process models: Considerations and case studies
    • Coit, D. W., B. T. Jackson, and A. E. Smith. 1998. Static neural network process models: considerations and case studies. Int. J. Prod. Res. 36:2953-2967.
    • (1998) Int. J. Prod. Res. , vol.36 , pp. 2953-2967
    • Coit, D.W.1    Jackson, B.T.2    Smith, A.E.3
  • 7
    • 0028969090 scopus 로고
    • Dynamic modeling of the activited sludge process: Improving prediction using neural networks
    • Côté, M., B.P.A. GrandJean, P. Lessard, and J. Thibault. 1995. Dynamic modeling of the activited sludge process: improving prediction using neural networks. Water Res. 29:995-1004.
    • (1995) Water Res. , vol.29 , pp. 995-1004
    • Côté, M.1    Grandjean, B.P.A.2    Lessard, P.3    Thibault, J.4
  • 8
    • 0030202174 scopus 로고    scopus 로고
    • Development of adaptive neural network for flexible control of batch processes
    • Dirion, J.-L., M. Casabassud, M. V. Le Lann, and G. Casamatta. 1996. Development of adaptive neural network for flexible control of batch processes. Chem. Eng. J. 63:65-77.
    • (1996) Chem. Eng. J. , vol.63 , pp. 65-77
    • Dirion, J.-L.1    Casabassud, M.2    Le Lann, M.V.3    Casamatta, G.4
  • 9
    • 85031549953 scopus 로고
    • Software sensors and adaptive control in biotechnology
    • J. J. Bimbenet, E. Dumoulin, and G. Trystram, ed. Proceedings of the AcoFoP III Symposium, Paris, France
    • Dochain, D. 1994. Software sensors and adaptive control in biotechnology. Pages 3-11 in Automatic Control of Food and Biological Processes. Vol. 36. J. J. Bimbenet, E. Dumoulin, and G. Trystram, ed. Proceedings of the AcoFoP III Symposium, Paris, France.
    • (1994) Automatic Control of Food and Biological Processes , vol.36 , pp. 3-11
    • Dochain, D.1
  • 10
    • 0013026083 scopus 로고
    • Economic importance of cheese yield
    • Int. Dairy Fed., Brussels, Belgium
    • Emmons, D. B. 1993. Economic importance of cheese yield. Pages 10-11 in Factors Affecting the Yield of Cheese. Special Issue no 9301. Int. Dairy Fed., Brussels, Belgium.
    • (1993) Factors Affecting the Yield of Cheese , Issue.9301 SPEC. ISSUE , pp. 10-11
    • Emmons, D.B.1
  • 11
    • 0031733749 scopus 로고    scopus 로고
    • Application of artificial neural networks as a non-linear modular modeling technique to describe bacterial growth in chilled food products
    • Geeraerd, A. H., C. H. Herremans, C. Cenens, and J. F. Van Impe. 1998. Application of artificial neural networks as a non-linear modular modeling technique to describe bacterial growth in chilled food products. Int. J. Food Microbiol. 44:49-68.
    • (1998) Int. J. Food Microbiol. , vol.44 , pp. 49-68
    • Geeraerd, A.H.1    Herremans, C.H.2    Cenens, C.3    Van Impe, J.F.4
  • 12
    • 0032170991 scopus 로고    scopus 로고
    • Neural network prediction modeling for a continuous, snack food frying process
    • Huang, Y., A. D. Whittaker, and R. E. Lacey. 1998. Neural network prediction modeling for a continuous, snack food frying process. Trans. ASAE 41:1511-1517.
    • (1998) Trans. ASAE , vol.41 , pp. 1511-1517
    • Huang, Y.1    Whittaker, A.D.2    Lacey, R.E.3
  • 13
    • 0032170640 scopus 로고    scopus 로고
    • Internal model control for a continuous, snack food frying process using neural networks
    • Huang, Y., A. D. Whittaker, and R. E. Lacey. 1998. Internal model control for a continuous, snack food frying process using neural networks. Trans. ASAE 41:1519-1525.
    • (1998) Trans. ASAE , vol.41 , pp. 1519-1525
    • Huang, Y.1    Whittaker, A.D.2    Lacey, R.E.3
  • 14
    • 0000256662 scopus 로고    scopus 로고
    • Statistical design and analysis of experiments in cheese technology
    • Hunter, E. A., D. A. McNulty, and J. M. Banks. 1997. Statistical design and analysis of experiments in cheese technology. Lebensm. Wissen. Technol. 30:121-128.
    • (1997) Lebensm. Wissen. Technol. , vol.30 , pp. 121-128
    • Hunter, E.A.1    McNulty, D.A.2    Banks, J.M.3
  • 15
    • 0032735194 scopus 로고    scopus 로고
    • Review of the applications of neural networks in chemical process control - Simulation and online implementation
    • Hussain, M. A. 1999. Review of the applications of neural networks in chemical process control - simulation and online implementation. Artif. Intell. Eng. 13:55-68.
    • (1999) Artif. Intell. Eng. , vol.13 , pp. 55-68
    • Hussain, M.A.1
  • 16
    • 0031055914 scopus 로고    scopus 로고
    • Review. Global and local neural network models in biotechnology: Application to different cultivation processes
    • Karim, M. N., T. Yoshiomi, S. L. Rivera, V. M. Saucedo, B. Eikens, and G.-S. Oh. 1997. Review. Global and local neural network models in biotechnology: application to different cultivation processes. J. Ferm. Bioeng. 83:1-11.
    • (1997) J. Ferm. Bioeng. , vol.83 , pp. 1-11
    • Karim, M.N.1    Yoshiomi, T.2    Rivera, S.L.3    Saucedo, V.M.4    Eikens, B.5    Oh, G.-S.6
  • 17
    • 0039901538 scopus 로고
    • Design of experiments statistical treatment of yield data
    • Int. Dairy Fed., Brussels, Belgium
    • Lacroix, C., P. Verret, and D. B. Emmons. 1993. Design of experiments statistical treatment of yield data. Pages 128-150 in Factors affecting the yield of cheese. Special Issue no 9301. Int. Dairy Fed., Brussels, Belgium.
    • (1993) Factors Affecting the Yield of Cheese , Issue.9301 SPEC. ISSUE , pp. 128-150
    • Lacroix, C.1    Verret, P.2    Emmons, D.B.3
  • 18
    • 0030268326 scopus 로고    scopus 로고
    • Regional and seasonal variations of nitrogen fractions in commingled milk
    • Lacroix, C., P. Verret, and P. Paquin. 1996. Regional and seasonal variations of nitrogen fractions in commingled milk. Int. Dairy J. 6:947-961.
    • (1996) Int. Dairy J. , vol.6 , pp. 947-961
    • Lacroix, C.1    Verret, P.2    Paquin, P.3
  • 19
    • 0031147938 scopus 로고    scopus 로고
    • Effect of data preprocessing on the performance of artificial neural networks for dairy yield prediction and cow culling classification
    • Lacroix, R., F. Salehi, X. Y. Yang, and K. M. Wade. 1997. Effect of data preprocessing on the performance of artificial neural networks for dairy yield prediction and cow culling classification. Trans. ASAE 40:839-846.
    • (1997) Trans. ASAE , vol.40 , pp. 839-846
    • Lacroix, R.1    Salehi, F.2    Yang, X.Y.3    Wade, K.M.4
  • 20
    • 0028533104 scopus 로고
    • Neural network models for final process time determination in fermented milk production
    • Latrille, E., G. Corrieu, and J. Thibault. 1994. Neural network models for final process time determination in fermented milk production. Comp. Chem. Eng. 18:1171-1181.
    • (1994) Comp. Chem. Eng. , vol.18 , pp. 1171-1181
    • Latrille, E.1    Corrieu, G.2    Thibault, J.3
  • 21
    • 0004166140 scopus 로고
    • Processing conditions
    • Int. Dairy Fed., Brussels, Belgium
    • Lawrence, R. C. 1993. Processing conditions. Pages 64-78 in Factors Affecting the Yield of Cheese. Special Issue no 9301. Int. Dairy Fed., Brussels, Belgium.
    • (1993) Factors Affecting the Yield of Cheese , Issue.9301 SPEC. ISSUE , pp. 64-78
    • Lawrence, R.C.1
  • 22
    • 0001875717 scopus 로고
    • Factors that determine the ph of young Cheddar cheese
    • Lawrence, R. C., and J. Gilles. 1982. Factors that determine the pH of young Cheddar cheese. N.Z. J. Dairy Sci. Technol. 17:1-14.
    • (1982) N.Z. J. Dairy Sci. Technol. , vol.17 , pp. 1-14
    • Lawrence, R.C.1    Gilles, J.2
  • 23
    • 0000446463 scopus 로고
    • A controlled approach to cheese technology
    • Lawrence, R. C., H. A. Heap, and J. Gilles. 1984. A controlled approach to cheese technology. J. Dairy Sci. 67:1632-1645.
    • (1984) J. Dairy Sci. , vol.67 , pp. 1632-1645
    • Lawrence, R.C.1    Heap, H.A.2    Gilles, J.3
  • 24
    • 0039901537 scopus 로고
    • Estimation of processing efficiency in commercial plants
    • Int. Dairy Fed., Brussels, Belgium
    • Lawrence, R. C., and K. A. Johnston. 1993. Estimation of processing efficiency in commercial plants. Pages 53-57 in Factors affecting the yield of cheese. Special Issue no 9301. Int. Dairy Fed., Brussels, Belgium.
    • (1993) Factors Affecting the Yield of Cheese , Issue.9301 SPEC. ISSUE , pp. 53-57
    • Lawrence, R.C.1    Johnston, K.A.2
  • 25
    • 0032532847 scopus 로고    scopus 로고
    • Case study investigating the application of neural networks for process modeling and condition monitoring
    • Lennox, B., P. Rutherford, G. A. Montague, and C. Haughin. 1998. Case study investigating the application of neural networks for process modeling and condition monitoring. Comp. Chem. Eng. 22:1573-1579.
    • (1998) Comp. Chem. Eng. , vol.22 , pp. 1573-1579
    • Lennox, B.1    Rutherford, P.2    Montague, G.A.3    Haughin, C.4
  • 26
    • 0031905760 scopus 로고    scopus 로고
    • Expert systems - What can they do for the food industry?
    • Linko, S. 1998. Expert systems - What can they do for the food industry? Trends Food Sci. Technol. 9:3-12.
    • (1998) Trends Food Sci. Technol. , vol.9 , pp. 3-12
    • Linko, S.1
  • 27
    • 0039309247 scopus 로고
    • Artificial intelligence in bioprocess modeling, estimation and control
    • J. J. Bimbenet, E. Dumoulin, and G. Trystram, ed. Proceedings of the AcoFoP III Symposium, Paris, France
    • Linko, S., Y.-H. Zhu, T. Eerikäinen, T. Siimes, and P. Linko. 1994. Artificial intelligence in bioprocess modeling, estimation and control. Pages 143-158 in Automatic Control of Food and Biological Processes. Vol. 36. J. J. Bimbenet, E. Dumoulin, and G. Trystram, ed. Proceedings of the AcoFoP III Symposium, Paris, France.
    • (1994) Automatic Control of Food and Biological Processes , vol.36 , pp. 143-158
    • Linko, S.1    Zhu, Y.-H.2    Eerikäinen, T.3    Siimes, T.4    Linko, P.5
  • 28
    • 0023331258 scopus 로고
    • An introduction to computing with neural nets
    • April
    • Lippmann, R. P. 1987. An introduction to computing with neural nets. IEEE ASSP Magazine April:198-212.
    • (1987) IEEE ASSP Magazine , pp. 198-212
    • Lippmann, R.P.1
  • 29
    • 0041088560 scopus 로고
    • Cheese yield used as an instrument for process control - Experience in Friesland, the Netherlands
    • Int. Dairy Fed., Brussels, Belgium
    • Lolkema, H. 1993. Cheese yield used as an instrument for process control - Experience in Friesland, the Netherlands. Pages 156-197 in Factors Affecting the Yield of Cheese. Special Issue no 9301. Int. Dairy Fed., Brussels, Belgium.
    • (1993) Factors Affecting the Yield of Cheese , Issue.9301 SPEC. ISSUE , pp. 156-197
    • Lolkema, H.1
  • 31
    • 0003029188 scopus 로고    scopus 로고
    • Food quality prediction with neural networks
    • Ni, H., and S. Gunasekaran. 1998. Food quality prediction with neural networks. Food Technol. 52:60-65.
    • (1998) Food Technol. , vol.52 , pp. 60-65
    • Ni, H.1    Gunasekaran, S.2
  • 32
    • 0028174395 scopus 로고
    • Optimizing control of a continuous stirred tank fermenter using a neural network
    • Normandin, A., J. Thibault, and B.P.A. Grandjean. 1994. Optimizing control of a continuous stirred tank fermenter using a neural network. Bioprocess Eng. 10:109-113.
    • (1994) Bioprocess Eng. , vol.10 , pp. 109-113
    • Normandin, A.1    Thibault, J.2    Grandjean, B.P.A.3
  • 34
    • 0030456785 scopus 로고    scopus 로고
    • Preliminary screening of neural network configurations for bioreactor applications
    • Patnaik, P. R. 1996. Preliminary screening of neural network configurations for bioreactor applications. Biotechnol. Tech. 10:967-970.
    • (1996) Biotechnol. Tech. , vol.10 , pp. 967-970
    • Patnaik, P.R.1
  • 35
    • 0029985019 scopus 로고    scopus 로고
    • Linear regression neural network and induction analysis to determine harvesting and processing effects on surimi quality
    • Peters, G., M. T. Morissey, G. Sylvia, and J. Bolte. 1996. Linear regression neural network and induction analysis to determine harvesting and processing effects on surimi quality. J. Food Sci. 61:876-880.
    • (1996) J. Food Sci. , vol.61 , pp. 876-880
    • Peters, G.1    Morissey, M.T.2    Sylvia, G.3    Bolte, J.4
  • 36
    • 0000418833 scopus 로고
    • Caracterisation et classification de bactéries lactiques à partir de la mesure de leur cinétique d'acidification
    • Picque, D., B. Perret, E. Latrille, and G. Corrieu. 1992. Caracterisation et classification de bactéries lactiques à partir de la mesure de leur cinétique d'acidification. Lebensm. Wissen. Technol. 25:181-186.
    • (1992) Lebensm. Wissen. Technol. , vol.25 , pp. 181-186
    • Picque, D.1    Perret, B.2    Latrille, E.3    Corrieu, G.4
  • 37
    • 0032099978 scopus 로고    scopus 로고
    • Automatic early stopping using cross validation: Quantifying the criteria
    • Prechelt, L. 1998. Automatic early stopping using cross validation: quantifying the criteria. Neural Networks 11:761-767.
    • (1998) Neural Networks , vol.11 , pp. 761-767
    • Prechelt, L.1
  • 39
    • 0032143484 scopus 로고    scopus 로고
    • Improving dairy yield predictions through combined record classifiers and specialized artificial neural networks
    • Salehi, F., R. Lacroix, and K. M. Wade. 1998. Improving dairy yield predictions through combined record classifiers and specialized artificial neural networks. Comput. Electron. Agric. 20:199-213.
    • (1998) Comput. Electron. Agric. , vol.20 , pp. 199-213
    • Salehi, F.1    Lacroix, R.2    Wade, K.M.3
  • 40
    • 0010177418 scopus 로고
    • Online measurement of physical and chemical process parameters to achieve improved control, feedback control, and time optimization of fermentation processes using neural networks and fuzzy logic
    • J. J. Bimbenet, E. Dumoulin, and G. Trystram, ed. Proceedings of the AcoFoP III Symposium, Paris, France
    • Schrader, U., U. Hege, T. Enders, and V. Denk. 1994. Online measurement of physical and chemical process parameters to achieve improved control, feedback control, and time optimization of fermentation processes using neural networks and fuzzy logic. Pages 115-122 in Automatic Control of Food and Biological Processes. Vol. 36. J. J. Bimbenet, E. Dumoulin, and G. Trystram, ed. Proceedings of the AcoFoP III Symposium, Paris, France.
    • (1994) Automatic Control of Food and Biological Processes , vol.36 , pp. 115-122
    • Schrader, U.1    Hege, U.2    Enders, T.3    Denk, V.4
  • 42
    • 0000848878 scopus 로고
    • Process control using feedforward neural networks
    • Thibault, J., and B.P.A. Grandjean. 1992. Process control using feedforward neural networks. J. Syst. Eng. 2:198-212.
    • (1992) J. Syst. Eng. , vol.2 , pp. 198-212
    • Thibault, J.1    Grandjean, B.P.A.2
  • 43
    • 0025701454 scopus 로고
    • On-line prediction of fermentation variables using neural networks
    • Thibault, J., V. van Breusegem, A. Chéruy. 1990. On-Line prediction of fermentation variables using neural networks. Biotechnol. Bioeng. 36:1041-1048.
    • (1990) Biotechnol. Bioeng. , vol.36 , pp. 1041-1048
    • Thibault, J.1    Van Breusegem, V.2    Chéruy, A.3
  • 44
    • 0001044269 scopus 로고    scopus 로고
    • Strategies for modeling and control of nonlinear chemical processes using neural networks
    • Wang, H., Y. Oh, and E. S. Yoon. 1998. Strategies for modeling and control of nonlinear chemical processes using neural networks. Comp. Chem. Eng. (Suppl. 22):S823-S826.
    • (1998) Comp. Chem. Eng. , Issue.22 SUPPL.
    • Wang, H.1    Oh, Y.2    Yoon, E.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.