-
1
-
-
0001672015
-
-
(a) Ganguly, P.; Paranjape, D. V.; Sastry, M. J. Am. Chem. Soc. 1993, 115, 793.
-
(1993)
J. Am. Chem. Soc.
, vol.115
, pp. 793
-
-
Ganguly, P.1
Paranjape, D.V.2
Sastry, M.3
-
2
-
-
0000236619
-
-
(b) Bardosova, M.; Tregold, R. H.; Ali-Adib, Z. Langmuir 1995, 11, 1273.
-
(1995)
Langmuir
, vol.11
, pp. 1273
-
-
Bardosova, M.1
Tregold, R.H.2
Ali-Adib, Z.3
-
3
-
-
0000803310
-
-
(c) Clemente-Leon, M.; Agricole, B.; Mingotaud, C.; Gomez-Garcia, C. J.; Coronado, E.; Delhaes, P. Langmuir 1997, 13, 2340.
-
(1997)
Langmuir
, vol.13
, pp. 2340
-
-
Clemente-Leon, M.1
Agricole, B.2
Mingotaud, C.3
Gomez-Garcia, C.J.4
Coronado, E.5
Delhaes, P.6
-
4
-
-
0000263078
-
-
(a) Sastry, M.; Mayya, K. S.; Patil, V.; Paranjape, D. V.; Hegde, S. G. J. Phys. Chem. B 1997, 101, 4954.
-
(1997)
J. Phys. Chem. B
, vol.101
, pp. 4954
-
-
Sastry, M.1
Mayya, K.S.2
Patil, V.3
Paranjape, D.V.4
Hegde, S.G.5
-
5
-
-
0030767199
-
-
(b) Patil, V.; Mayya, K. S.; Pradhan, S. D.; Sastry, M. J. Am. Chem. Soc. 1997, 119, 9281.
-
(1997)
J. Am. Chem. Soc.
, vol.119
, pp. 9281
-
-
Patil, V.1
Mayya, K.S.2
Pradhan, S.D.3
Sastry, M.4
-
7
-
-
0001594656
-
-
(d) Sastry, M.; Mayya, K. S.; Patil, V. Langmuir 1998, 14, 5198.
-
(1998)
Langmuir
, vol.14
, pp. 5198
-
-
Sastry, M.1
Mayya, K.S.2
Patil, V.3
-
8
-
-
0026867362
-
-
(a) Herron, J. N.; Muller, W.; Paudler, M.; Roegler, H.; Ringsdorf, H.; Suci, P. A. Langmuir 1992, 8, 1413.
-
(1992)
Langmuir
, vol.8
, pp. 1413
-
-
Herron, J.N.1
Muller, W.2
Paudler, M.3
Roegler, H.4
Ringsdorf, H.5
Suci, P.A.6
-
9
-
-
0027666777
-
-
(b)Reiter, R.; Motschmann, H.; Knoll, W. Langmuir 1993, 9, 2430.
-
(1993)
Langmuir
, vol.9
, pp. 2430
-
-
Reiter, R.1
Motschmann, H.2
Knoll, W.3
-
10
-
-
0000536414
-
-
(c) Riccio, A.; Lanzi, M.; Antolini, F.; De Nitti, C.; Tavani, C.; Nicolini, C. Langmuir 1996, 12, 1545.
-
(1996)
Langmuir
, vol.12
, pp. 1545
-
-
Riccio, A.1
Lanzi, M.2
Antolini, F.3
De Nitti, C.4
Tavani, C.5
Nicolini, C.6
-
11
-
-
37049080372
-
-
(a) Rajam, S.; Heywood, B. R.; Walker, J. B. A.; Mann, S.; Davey, R. J.; Birchall, J. D. J. Chem. Soc., Faraday Trans. 1991, 87, 727.
-
(1991)
J. Chem. Soc., Faraday Trans.
, vol.87
, pp. 727
-
-
Rajam, S.1
Heywood, B.R.2
Walker, J.B.A.3
Mann, S.4
Davey, R.J.5
Birchall, J.D.6
-
13
-
-
0025607320
-
-
Ahlers, M.; Muller, W.; Reichert, A.; Ringsdorf, H.; Venzmer, J. Angew. Chem., Int. Ed. Engl. 1990, 29, 1269.
-
(1990)
Angew. Chem., Int. Ed. Engl.
, vol.29
, pp. 1269
-
-
Ahlers, M.1
Muller, W.2
Reichert, A.3
Ringsdorf, H.4
Venzmer, J.5
-
14
-
-
4243087068
-
-
(a) Okahata, O.; Kobayashi, T.; Tanaka, K. Langmuir 1996, 12, 1326.
-
(1996)
Langmuir
, vol.12
, pp. 1326
-
-
Okahata, O.1
Kobayashi, T.2
Tanaka, K.3
-
15
-
-
0030235445
-
-
(b) Ijiro, k.; Shimomura, M.; Tanaka, M.; Nakamura, H.; Hasebe, K. Thin Solid Films 1996, 284-285, 780.
-
(1996)
Thin Solid Films
, vol.284-285
, pp. 780
-
-
Ijiro, K.1
Shimomura, M.2
Tanaka, M.3
Nakamura, H.4
Hasebe, K.5
-
16
-
-
0030933410
-
-
(c) Shimomura, M.; Nakamura, F.; Ijiro, K.; Taketsuna, H.; Tanaka, M.; Nakamura, H.; Hasebe, K. J. Am. Chem. Soc. 1997, 119, 2341.
-
(1997)
J. Am. Chem. Soc.
, vol.119
, pp. 2341
-
-
Shimomura, M.1
Nakamura, F.2
Ijiro, K.3
Taketsuna, H.4
Tanaka, M.5
Nakamura, H.6
Hasebe, K.7
-
17
-
-
0032670302
-
-
(d) Kago, K.; Matsuoka, H.; Yoshitome, R.; Yamaoka, H.; Ijiro, K.; Shimomura, M. Langmuir 1999, 15, 5193.
-
(1999)
Langmuir
, vol.15
, pp. 5193
-
-
Kago, K.1
Matsuoka, H.2
Yoshitome, R.3
Yamaoka, H.4
Ijiro, K.5
Shimomura, M.6
-
18
-
-
0033877424
-
-
(e) Ebara, Y.; Mizutani, K.; Okahata, Y. Langmuir 2000, 16, 2416.
-
(2000)
Langmuir
, vol.16
, pp. 2416
-
-
Ebara, Y.1
Mizutani, K.2
Okahata, Y.3
-
19
-
-
0031036238
-
-
Radler, J. O.; Koltover, I.; Salditt, T.; Safinya, C. R. Science 1997, 275, 810.
-
(1997)
Science
, vol.275
, pp. 810
-
-
Radler, J.O.1
Koltover, I.2
Salditt, T.3
Safinya, C.R.4
-
20
-
-
0343881321
-
-
note
-
In this experiment, both the ODA monolayer and the ethidium bromide molecules are cationic, and therefore, the DNA intercalator does not complex with the ODA monolayer and no expansion of the Langmuir monolayer is observed.
-
-
-
-
22
-
-
0003519909
-
-
Academic Press: San Diego, CA, The monolayer transfer onto different substrates was effected at a surface pressure of 30 dyn/cm for all experiments in this study
-
Ulman, A. An introduction to ultrathin organic films: from Langmuir-Blodgett to self-assembly; Academic Press: San Diego, CA, 1991. The monolayer transfer onto different substrates was effected at a surface pressure of 30 dyn/cm for all experiments in this study.
-
(1991)
An Introduction to Ultrathin Organic Films: from Langmuir-blodgett to Self-assembly
-
-
Ulman, A.1
-
23
-
-
0343881320
-
-
note
-
2).
-
-
-
-
24
-
-
0343445481
-
-
note
-
2.
-
-
-
-
26
-
-
0030848621
-
-
and references therein
-
Decher, D. Science 1997, 277, 1232 and references therein.
-
(1997)
Science
, vol.277
, pp. 1232
-
-
Decher, D.1
-
27
-
-
0031273660
-
-
(a) Lvov, Y.; Ariga, K.; Onda, M.; Ichinose, I.; Kunitake, T. Langmuir 1997, 13, 6195.
-
(1997)
Langmuir
, vol.13
, pp. 6195
-
-
Lvov, Y.1
Ariga, K.2
Onda, M.3
Ichinose, I.4
Kunitake, T.5
-
28
-
-
0034249723
-
-
(b) Kumar, A.; Mandale, A. B.; Sastry, M. Langmuir 2000, 16, 6921.
-
(2000)
Langmuir
, vol.16
, pp. 6921
-
-
Kumar, A.1
Mandale, A.B.2
Sastry, M.3
-
30
-
-
0030910837
-
-
2 (expansion by ∼32%) may be accounted for if one assumes that roughly five out of the eight sites per DNA molecule immobilized at the air-water interface are intercalated by ethidium bromide molecules. This would lead to an increase in length of the DNA molecules by 17 Å and works out to a ∼31% increase in the length of the DNA molecule (normal length ∼ 55 Å). This result is consistent with further uptake of ethidium bromide indicated in the fluorescence measurements shown in Figure 2B.
-
(1997)
J. Am. Chem. Soc.
, vol.119
, pp. 3792
-
-
Coury, J.E.1
Anderson, J.R.2
McFail-Isom, L.3
Williams, L.D.4
Bottomley, L.A.5
-
31
-
-
85048645035
-
-
2 (expansion by ∼32%) may be accounted for if one assumes that roughly five out of the eight sites per DNA molecule immobilized at the air-water interface are intercalated by ethidium bromide molecules. This would lead to an increase in length of the DNA molecules by 17 Å and works out to a ∼31% increase in the length of the DNA molecule (normal length ∼ 55 Å). This result is consistent with further uptake of ethidium bromide indicated in the fluorescence measurements shown in Figure 2B
-
2 (expansion by ∼32%) may be accounted for if one assumes that roughly five out of the eight sites per DNA molecule immobilized at the air-water interface are intercalated by ethidium bromide molecules. This would lead to an increase in length of the DNA molecules by 17 Å and works out to a ∼31% increase in the length of the DNA molecule (normal length ∼ 55 Å). This result is consistent with further uptake of ethidium bromide indicated in the fluorescence measurements shown in Figure 2B.
-
(1961)
J. Mol. Biol.
, vol.3
, pp. 18
-
-
Lerman, L.S.1
-
32
-
-
0342575606
-
-
note
-
The fluorescence measurements were done on a Perkin-Elmer model LS 50-B spectrofluorimeter at 25 °C, with slit widths of 5 nm for excitation at 460 and 10 nm for the emission monochromators. The LB films were grown on quartz substrates cut to fit precisely in the quartz cuvette normally used for liquid samples.
-
-
-
-
34
-
-
0343445478
-
-
note
-
-1.
-
-
-
-
36
-
-
0343445472
-
-
note
-
The UV melting measurements were carried out on a Perkin-Elmer Lambda 15 UV/VIS spectrophotometer fitted with a Julabo water circulator with a programmed heating accessory. The film was heated at a rate of 0.5 °C/min, and the thermal denaturation of the duplex was followed by monitoring changes in the absorbance at 260 nm as a function of temperature.
-
-
-
|