-
1
-
-
4243301364
-
-
Hoveyda, A. H.; Evans, D. A.; Fu, G. C. Chem. Rev. 1993, 93, 1314-1320.
-
(1993)
Chem. Rev.
, vol.93
, pp. 1314-1320
-
-
Hoveyda, A.H.1
Evans, D.A.2
Fu, G.C.3
-
2
-
-
0000478080
-
Diastereselective epoxidation
-
Helchem, G.; Hoffmann, R. W.; Mulzer, J.; Schaumann, E. Eds. Houben Weyl, Thieme Stuttgart: New York
-
Schwesinger, J. W.; Bauer, T. Diastereselective epoxidation. In Stereoselective Synthesis; Helchem, G.; Hoffmann, R. W.; Mulzer, J.; Schaumann, E. Eds. Houben Weyl, Thieme Stuttgart: New York 1995, Vol. E21e, pp.4599.
-
(1995)
Stereoselective Synthesis
, vol.E21E
, pp. 4599
-
-
Schwesinger, J.W.1
Bauer, T.2
-
3
-
-
0001451148
-
-
Murray, R. W.; Singh, M.; Williams, B. L.; Moncrieff, H., M. J. Org. Chem. 1996, 61, 1830-1841.
-
(1996)
J. Org. Chem.
, vol.61
, pp. 1830-1841
-
-
Murray, R.W.1
Singh, M.2
Williams, B.L.3
Moncrieff, H.M.4
-
4
-
-
84948351019
-
-
Curci, R.; Dinoni, A.; Rubino, M. F. Pure Appl. Chem. 1995, 67, 811-822.
-
(1995)
Pure Appl. Chem.
, vol.67
, pp. 811-822
-
-
Curci, R.1
Dinoni, A.2
Rubino, M.F.3
-
6
-
-
0030669437
-
-
Houk, K. N.; Liu, J.; DeMello, N. C.; Condroski, K. R. J. Am. Chem. Soc. 1997, 119, 10147-10152.
-
(1997)
J. Am. Chem. Soc.
, vol.119
, pp. 10147-10152
-
-
Houk, K.N.1
Liu, J.2
DeMello, N.C.3
Condroski, K.R.4
-
7
-
-
0001437107
-
-
Jenson, C.; Liu, J.; Houk, K. N.; Jorgensen, W. L. J. Am. Chem. Soc. 1997, 119, 12982-12983.
-
(1997)
J. Am. Chem. Soc.
, vol.119
, pp. 12982-12983
-
-
Jenson, C.1
Liu, J.2
Houk, K.N.3
Jorgensen, W.L.4
-
8
-
-
0030909214
-
-
Singleton, D. A.; Merrigan S. R.; Liu, J.; K. N. Houk J. Am. Chem. Soc. 1997, 119, 3385-3386.
-
(1997)
J. Am. Chem. Soc.
, vol.119
, pp. 3385-3386
-
-
Singleton, D.A.1
Merrigan, S.R.2
Liu, J.3
Houk, K.N.4
-
9
-
-
0032581928
-
-
Bach, R. D.; Glukhovtsev, M. N.; Gonzales, C. J. Am. Chem. Soc. 1998, 120, 9902-9910.
-
(1998)
J. Am. Chem. Soc.
, vol.120
, pp. 9902-9910
-
-
Bach, R.D.1
Glukhovtsev, M.N.2
Gonzales, C.3
-
13
-
-
2642633750
-
-
Bach, R. D.; Etsévez, C. M.; Winter J. E.; Glukhovtsev, M. N. J. Am. Chem. Soc. 1998, 120, 680-685.
-
(1998)
J. Am. Chem. Soc.
, vol.120
, pp. 680-685
-
-
Bach, R.D.1
Etsévez, C.M.2
Winter, J.E.3
Glukhovtsev, M.N.4
-
16
-
-
0000900117
-
-
see also references therein cited
-
Kocovsky, P.; Stary, Ivo. J. Org. Chem. 1990, 55, 3236-3236; see also references therein cited.
-
(1990)
J. Org. Chem.
, vol.55
, pp. 3236-3236
-
-
Kocovsky, P.1
Stary, I.2
-
19
-
-
0030602242
-
-
Mevellec, L.; Evers, M.; Huet, F. Tetrahedron 1996, 48, 15103-15116.
-
(1996)
Tetrahedron
, vol.48
, pp. 15103-15116
-
-
Mevellec, L.1
Evers, M.2
Huet, F.3
-
26
-
-
0030908605
-
-
Gibert, M.; Ferrer, M.; Sànchez-Baeza, F.; Messeguer, A. Tetrahedron 1997, 53, 8643-8650.
-
(1997)
Tetrahedron
, vol.53
, pp. 8643-8650
-
-
Gibert, M.1
Ferrer, M.2
Sànchez-Baeza, F.3
Messeguer, A.4
-
28
-
-
0009580858
-
-
Tricycle epoxysulfites such as 15a, 15s, and 16a are a novelty in the current literature. To our knowledge no other epoxysulfites have been published before. For the above reasons details of data collections, structure refinements and theoretical calculation (B3LYP/6-31G*) related to the above structures have been submitted as full paper to Zeitschrift für Kristallographie
-
Tricycle epoxysulfites such as 15a, 15s, and 16a are a novelty in the current literature. To our knowledge no other epoxysulfites have been published before. For the above reasons details of data collections, structure refinements and theoretical calculation (B3LYP/6-31G*) related to the above structures have been submitted as full paper to Zeitschrift für Kristallographie.
-
-
-
-
29
-
-
0004133516
-
-
Gaussian, Inc., Pittsburgh PA
-
Gaussian 94, Revision E.3, M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1995.
-
(1995)
Gaussian 94, Revision E.3
-
-
Frisch, M.J.1
Trucks, G.W.2
Schlegel, H.B.3
Gill, P.M.W.4
Johnson, B.G.5
Robb, M.A.6
Cheeseman, J.R.7
Keith, T.8
Petersson, G.A.9
Montgomery, J.A.10
Raghavachari, K.11
Al-Laham, M.A.12
Zakrzewski, V.G.13
Ortiz, J.V.14
Foresman, J.B.15
Cioslowski, J.16
Stefanov, B.B.17
Nanayakkara, A.18
Challacombe, M.19
Peng, C.Y.20
Ayala, P.Y.21
Chen, W.22
Wong, M.W.23
Andres, J.L.24
Replogle, E.S.25
Gomperts, R.26
Martin, R.L.27
Fox, D.J.28
Binkley, J.S.29
Defrees, D.J.30
Baker, J.31
Stewart, J.P.32
Head-Gordon, M.33
Gonzalez, C.34
Pople, J.A.35
more..
-
30
-
-
0009623354
-
-
note
-
Cyclic sulfites 7, 8 and 5H show a syn pyramidalization of the olefinic carbon (anti bending of the olefinic hydrogens) higher than 1. For conformers (o)-7, (i)-7, (o)-8 and (i)-8 the α angles (B3LYP/6-31G*) are -2.1, -1.2, -2.2 and -1.4° respectively. The two most stable conformation of 5H (5H' and 5H") show an even higher pyramidalization with α angles of -2.3° and -3.0°. The α values in the calculated TSs (B3LYP/6-31G*) are as follows: DHD-1a +6.4°, DHD-1s -7.9°, DHD-1a +7.2°, DHD-1s -8.2°, DHD-7a +6.7°, DHD-7s -9.0°, DHD-8a +7.7°, DHD-8s -11.1°, DHD-5H'a +14.5°, +1.0°, DHD-5H's -8.4°, -8.1° (two different α values are reported because the TSs DHD-5H'a and DHD-5H's are asynchronous). DHD-5H"a +8.0°, DHD-5H"s -9.1°, anti,exo-1 +6.7°, syn,exo-1 -8.4°, anti,endo-1 +7.8°, syn,endo-1 -10.45°.
-
-
-
-
31
-
-
0009642854
-
-
Liu, J.; Houk, K. N.; Dinoi, A.; Fusco, C.; Curci, R. J. Org. Chem. 1998, 63, 8563-8569.
-
(1998)
J. Org. Chem.
, vol.63
, pp. 8563-8569
-
-
Liu, J.1
Houk, K.N.2
Dinoi, A.3
Fusco, C.4
Curci, R.5
-
33
-
-
0030069041
-
-
Binns, F.; Hayes, R.; Hodgetts, K. J.; Saengchantara S. T.; Wallace, T. W.; Wallis C. J. Tetrahedron 1996, 52, 3631-3658.
-
(1996)
Tetrahedron
, vol.52
, pp. 3631-3658
-
-
Binns, F.1
Hayes, R.2
Hodgetts, K.J.3
Saengchantara, S.T.4
Wallace, T.W.5
Wallis, C.J.6
-
35
-
-
0009580441
-
-
note
-
Activation thermodynamic parameters are as follows: DHD-1a, ΔH≠ = 44.89 kJ/mol, ΔS≠ = -116.06 J/mol K, ΔG≠ = 79.45 kJ/mol; DHD-1s, ΔH≠ = 41.00 kJ/mol, ΔS≠ = -119.75 J/mol K, ΔG≠ = 76.69 kJ/mol; DMD-1a, ΔH≠ = 65.22 kJ/mol, ΔS≠ = -40.29 J/mol K, ΔG≠ = 101.38 kJ/mol; DMD-1s, ΔH≠ = 60.08 kJ/mol, ΔS≠ = -129.03 J/mol K, ΔG≠ = 98.58 kJ/mol; DHD- 7a, ΔH≠ = 56.11 kJ/mol, ΔS≠ = -113.72 J/mol K, ΔG≠ = 90.00 kJ/mol; DHD-7s; ΔH≠ = 50.67 kJ/mol, ΔS≠ = -120.58 J/mol K, ΔG≠= 88.49 kJ/mol; DHD-8a, ΔH≠ = 48.49 kJ/mol, ΔS≠= -114.22 J/mol K, ΔG≠= 82.51 kJ/mol; DHD-8s, ΔH≠ = 72.97 kJ/mol, ΔS≠ = -104.52 J/mol K, ΔG≠= 106.57 kJ/mol; anti, exo-1, ΔH≠ = 49.04 kJ/mol , ΔS≠ = -121.80 J/mol K, ΔG≠ = 85.35 kJ/mol; syn,exo-1, ΔH≠ = 47.86 kJ /mol, ΔS≠ = -122.84 J/mol K, ΔG≠ = 82.84 kJ/mol; anti endo-1, ΔH≠ = 54.77 kJ /mol, ΔS≠= -120.96 J/mol K, ΔG≠= 90.88 kJ/mol; syn, endo-1, ΔH≠= 48.74 kJ/mol, ΔS≠ = -132.26 J/mol K, ΔG≠ = 88.20 kJ/mol.
-
-
-
-
36
-
-
0009602981
-
-
Manuscript in preparation
-
Manuscript in preparation.
-
-
-
-
37
-
-
0000054505
-
-
Gandolfi, R.; Tonoletti, G.; Rastelli A.; Bagatti, M. J. Org. Chem. 1993, 58, 6038-6048.
-
(1993)
J. Org. Chem.
, vol.58
, pp. 6038-6048
-
-
Gandolfi, R.1
Tonoletti, G.2
Rastelli, A.3
Bagatti, M.4
-
38
-
-
0009580019
-
-
Owing to excessive CPU time requirement, frequencies were not calculated for the Tss
-
Owing to excessive CPU time requirement, frequencies were not calculated for the Tss
-
-
-
-
39
-
-
0009617345
-
-
For example, the energy required to deform the cyclic sulfite (o)-7 from ground state geometry to geometry it assumes in the DHD-7s and DHD-7a TSs is 6.98 kJ/mol and 7.88 kJ/mol, respectively. Thus, the out-of-plane deformation effect gives rise to an electronic energy stabilization by 0.9 kJ/mol for the DHD-7s over the DHD-7a
-
For example, the energy required to deform the cyclic sulfite (o)-7 from ground state geometry to geometry it assumes in the DHD-7s and DHD-7a TSs is 6.98 kJ/mol and 7.88 kJ/mol, respectively. Thus, the out-of-plane deformation effect gives rise to an electronic energy stabilization by 0.9 kJ/mol for the DHD-7s over the DHD-7a.
-
-
-
|