-
1
-
-
0003011678
-
-
Patai, S., Ed.; John Wiley and Sons: New York
-
(a) Plesnicar, B. In The Chemistry of Peroxides; Patai, S., Ed.; John Wiley and Sons: New York, 1983; p 521.
-
(1983)
The Chemistry of Peroxides
, pp. 521
-
-
Plesnicar, B.1
-
3
-
-
0004165006
-
-
Wiley-Interscience: New York, Chapter 5
-
(c) Organic Peroxides; Swern, D., Ed.; Wiley-Interscience: New York, 1971; Vol. II, Chapter 5.
-
(1971)
Organic Peroxides
, vol.2
-
-
Swern, D.1
-
4
-
-
0000458209
-
-
For an excellent review on substrate-directable chemical reactions, see: Hoveyda, A. H.; Evans, D. A.; Fu, G. C. Chem. Rev. (Washington, D.C.) 1993, 93, 1307.
-
(1993)
Chem. Rev. (Washington, D.C.)
, vol.93
, pp. 1307
-
-
Hoveyda, A.H.1
Evans, D.A.2
Fu, G.C.3
-
13
-
-
0012959757
-
-
Csizmadia, I. C., Ed.; Elsevier: Scientific: Amsterdam
-
(a) Bach, R. D.; Willis, C. L.; Domagals, J. M. Applications of MO Theory in Organic Chemistry; Csizmadia, I. C., Ed.; Elsevier: Scientific: Amsterdam, 1977; Vol. 2, p 221.
-
(1977)
Applications of MO Theory in Organic Chemistry
, vol.2
, pp. 221
-
-
Bach, R.D.1
Willis, C.L.2
Domagals, J.M.3
-
14
-
-
0000456041
-
-
(b) Bach, R. D.; Andrés, J. L.; Davis, F. J. Org. Chem. 1992, 57, 613.
-
(1992)
J. Org. Chem.
, vol.57
, pp. 613
-
-
Bach, R.D.1
Andrés, J.L.2
Davis, F.3
-
15
-
-
0001451148
-
-
(a) Murray, R. W.; Singh, M.; Williams, B. L.; Moncrief, H. M. J. Org. Chem. 1996, 61, 1830.
-
(1996)
J. Org. Chem.
, vol.61
, pp. 1830
-
-
Murray, R.W.1
Singh, M.2
Williams, B.L.3
Moncrief, H.M.4
-
24
-
-
33947294185
-
-
(g) Curci, R.; DiPrete, R. A.; Edwards, J. O.; Modena, G. J. Org. Chem. 1970, 35, 740.
-
(1970)
J. Org. Chem.
, vol.35
, pp. 740
-
-
Curci, R.1
Diprete, R.A.2
Edwards, J.O.3
Modena, G.4
-
25
-
-
0002677384
-
-
Eliel, E. L., Allinger, N. L., Eds.; Wiley-Interscience: New York
-
Berti, G. Topics in Stereochemistry; Eliel, E. L., Allinger, N. L., Eds.; Wiley-Interscience: New York, 1973; Vol. 7, p 93.
-
(1973)
Topics in Stereochemistry
, vol.7
, pp. 93
-
-
Berti, G.1
-
26
-
-
2642672393
-
-
14b utilizing gradient geometry optimization
-
14b utilizing gradient geometry optimization.
-
-
-
-
27
-
-
0004133516
-
-
Gaussian, Inc.: Pittsburgh, PA
-
(b) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowki, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. J. P.; Head-Gordon, M.; González, C.; Pople, J. A. GAUSSIAN 94; Gaussian, Inc.: Pittsburgh, PA, 1995.
-
(1995)
GAUSSIAN 94
-
-
Frisch, M.J.1
Trucks, G.W.2
Schlegel, H.B.3
Gill, P.M.W.4
Johnson, B.G.5
Robb, M.A.6
Cheeseman, J.R.7
Keith, T.8
Petersson, G.A.9
Montgomery, J.A.10
Raghavachari, K.11
Al-Laham, M.A.12
Zakrzewski, V.G.13
Ortiz, J.V.14
Foresman, J.B.15
Cioslowki, J.16
Stefanov, B.B.17
Nanayakkara, A.18
Challacombe, M.19
Peng, C.Y.20
Ayala, P.Y.21
Chen, W.22
Wong, M.W.23
Andres, J.L.24
Replogle, E.S.25
Gomperts, R.26
Martin, R.L.27
Fox, D.J.28
Binkley, J.S.29
Defrees, D.J.30
Baker, J.31
Stewart, J.J.P.32
Head-Gordon, M.33
González, C.34
Pople, J.A.35
more..
-
30
-
-
0041401966
-
-
For a description of the G2 level see: Curtiss, L. A.; Raghavachari, K.; Trucks, G. W.; Pople, J. A. J. Chem. Phys. 1991, 94, 7221.
-
(1991)
J. Chem. Phys.
, vol.94
, pp. 7221
-
-
Curtiss, L.A.1
Raghavachari, K.2
Trucks, G.W.3
Pople, J.A.4
-
31
-
-
0030464437
-
-
(a) Bach, R. D.; Ayala, P. Y.; Schlegel, H. B. J. Am. Chem. Soc. 1996, 118, 12758.
-
(1996)
J. Am. Chem. Soc.
, vol.118
, pp. 12758
-
-
Bach, R.D.1
Ayala, P.Y.2
Schlegel, H.B.3
-
32
-
-
0030836820
-
-
(b) Bach, R. D.; Winter, J. E.; Canepa, C.; Blanchette, P. E. J. Org. Chem. 1997, 62, 5191.
-
(1997)
J. Org. Chem.
, vol.62
, pp. 5191
-
-
Bach, R.D.1
Winter, J.E.2
Canepa, C.3
Blanchette, P.E.4
-
33
-
-
0000419839
-
-
(c) Bach, R. D.; Owensby, A.; González, C.; Schlegel, H. B. J. Am. Chem. Soc. 1991, 113, 2338.
-
(1991)
J. Am. Chem. Soc.
, vol.113
, pp. 2338
-
-
Bach, R.D.1
Owensby, A.2
González, C.3
Schlegel, H.B.4
-
35
-
-
0031207661
-
-
(e) Bach, R. D.; Gonzalez, C.; Glukhovtsev, M. N.; Marquez, M.; Estévez, C. M.; Baboul, A. G.; Schlegel, H. B. J. Phys. Chem. A 1997, 101, 6092.
-
(1997)
J. Phys. Chem. A
, vol.101
, pp. 6092
-
-
Bach, R.D.1
Gonzalez, C.2
Glukhovtsev, M.N.3
Marquez, M.4
Estévez, C.M.5
Baboul, A.G.6
Schlegel, H.B.7
-
36
-
-
0000036939
-
-
(f) Bach, R. D.; Winter, J. E.; McDouall, J. J. W. J. Am. Chem. Soc. 1995, 117, 8586.
-
(1995)
J. Am. Chem. Soc.
, vol.117
, pp. 8586
-
-
Bach, R.D.1
Winter, J.E.2
McDouall, J.J.W.3
-
38
-
-
2642639186
-
-
note
-
stab = -18.8 kcal/mol. These data are consistent with the observation that protic solvents dramatically slow the rate of alkene epoxidations.
-
-
-
-
39
-
-
2642674843
-
-
note
-
16b the relative stability order is the same. (b) The relative energies of structures B1 and C1 with respect to minima B and C are 7.1 and 8.6 (G2 theory), 8.2 and 7.5 (B3LYP/6-31G(d,p)), and 8.7 and 10.8 kcal/mol (MP2-(full)/6-31G(d,p)), respectively. The energy difference between structures B and A is 1.7 (G2), 1.9 (B3LYP/6-31G(d,p)), and 2.8 kcal/mol (MP2-(full)/6-31G(d,p)).
-
-
-
-
41
-
-
0030801647
-
-
The value was taken as cited in ref 20b. (b) East, A. L. L.; Smith, B. J.; Radom, L. J. Am. Chem. Soc. 1997, 119, 9014.
-
(1997)
J. Am. Chem. Soc.
, vol.119
, pp. 9014
-
-
East, A.L.L.1
Smith, B.J.2
Radom, L.3
-
42
-
-
2642638345
-
-
20b
-
20b
-
-
-
-
46
-
-
84946893847
-
-
(c) Miertus, S.; Scrocco, E.; Tomasi, J. J. Chem. Phys. 1981, 55, 117.
-
(1981)
J. Chem. Phys.
, vol.55
, pp. 117
-
-
Miertus, S.1
Scrocco, E.2
Tomasi, J.3
-
47
-
-
2642616595
-
-
note
-
A cautionary note is in order since the potential energy surface at the MP2/3-21G level was distinctly different from that observed at MP2/ 6-31G(d). An IRC showed that the acidic peroxyformic acid hydrogen migrated to the alcohol oxygen instead of the anticipated intramolecular migration to the carbonyl oxygen.
-
-
-
-
50
-
-
0004165006
-
-
Wiley-Interscience: New York
-
(c) Swern, D. Organic Peroxides; Wiley-Interscience: New York, 1971; Vol. II, pp 73-74 6.
-
(1971)
Organic Peroxides
, vol.2
, pp. 73-746
-
-
Swern, D.1
-
51
-
-
33947323728
-
-
(d) For a discussion of solvent assisted proton transfer in alkyl hydrogen peroxides, see: Dankleff, M. A. P.; Ruggero, C.; Edwards, J. O.; Pyun, H. Y. J. Am. Chem. Soc. 1968, 90, 3209.
-
(1968)
J. Am. Chem. Soc.
, vol.90
, pp. 3209
-
-
Dankleff, M.A.P.1
Ruggero, C.2
Edwards, J.O.3
Pyun, H.Y.4
-
52
-
-
33947294185
-
-
(e) Curci, R.; DiPrete, R. A.; Edwards, J. O.; Modena, G. J. Org. Chem. 1970, 35, 740.
-
(1970)
J. Org. Chem.
, vol.35
, pp. 740
-
-
Curci, R.1
DiPrete, R.A.2
Edwards, J.O.3
Modena, G.4
-
54
-
-
2642669914
-
-
The relative rates of epoxidation of ethene, propene, styrene, isobutene, and 2-butene with peracetic acid are 1, 22, 59, 484, and 489, respectively
-
(b) The relative rates of epoxidation of ethene, propene, styrene, isobutene, and 2-butene with peracetic acid are 1, 22, 59, 484, and 489, respectively.
-
-
-
-
55
-
-
0001473807
-
-
(a) Yamabe, S.; Kondou, C.; Minato, T. J. Org. Chem. 1996, 61, 616.
-
(1996)
J. Org. Chem.
, vol.61
, pp. 616
-
-
Yamabe, S.1
Kondou, C.2
Minato, T.3
-
56
-
-
0030909214
-
-
(b) Singleton, D. A.; Merrigan, S. R.; Liu, J.; Houk, K. N. J. Am. Chem. Soc. 1997, 119, 3385.
-
(1997)
J. Am. Chem. Soc.
, vol.119
, pp. 3385
-
-
Singleton, D.A.1
Merrigan, S.R.2
Liu, J.3
Houk, K.N.4
-
57
-
-
2642642532
-
-
26f local correlation functional
-
26f local correlation functional.
-
-
-
-
60
-
-
0038411829
-
-
(d) Stevens, P. J.; Devlin, F. J.; Chablowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 80, 11623.
-
(1994)
J. Phys. Chem.
, vol.80
, pp. 11623
-
-
Stevens, P.J.1
Devlin, F.J.2
Chablowski, C.F.3
Frisch, M.J.4
-
61
-
-
0345491105
-
-
(e) Lee, C.; Yang, W.; Parr, R. G.; Frisch, M. J. Phys. Rev. 1988, B41, 785.
-
(1988)
Phys. Rev.
, vol.B41
, pp. 785
-
-
Lee, C.1
Yang, W.2
Parr, R.G.3
Frisch, M.J.4
-
62
-
-
0000216001
-
-
(f) Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200.
-
(1980)
Can. J. Phys.
, vol.58
, pp. 1200
-
-
Vosko, S.H.1
Wilk, L.2
Nusair, M.3
-
63
-
-
2642645795
-
-
note
-
The stabilization energy for complex 1 computed at the B3LYP/ 6-311G(d,p) level is 10.6 kcal/mol and single point calculations at the QCISD(T) and MP4 level gave energies of 11.1 and 11.4 kcal/mol below that of isolated reactants. The three barrier heights for the oxygen transfer computed relative to these reactant clusters are 18.2, 22.5, and 19.3 kcal/ mol, respectively.
-
-
-
|