-
2
-
-
27144555609
-
-
(b) Rademacher, T. W.; Pakesh, R. B.; Dwek, R. A. Annu. Rev. Biochem. 1888, 57, 785-838.
-
(1888)
Annu. Rev. Biochem.
, vol.57
, pp. 785-838
-
-
Rademacher, T.W.1
Pakesh, R.B.2
Dwek, R.A.3
-
3
-
-
0024340857
-
-
(c) Sairam, M. R. FASEB J. 1989, 366, 1915-1926.
-
(1989)
FASEB J.
, vol.366
, pp. 1915-1926
-
-
Sairam, M.R.1
-
5
-
-
0027749278
-
-
(e) Boren, T.; Falk, P.; Roth, K. A.; Larson, G.; Normark, S, Science 1993, 262, 1892-1895.
-
(1993)
Science
, vol.262
, pp. 1892-1895
-
-
Boren, T.1
Falk, P.2
Roth, K.A.3
Larson, G.4
Normark, S.5
-
6
-
-
0009998435
-
-
Kovac, P., Ed.; American Chemical Society: Washington, DC
-
(a) Petitou, M. In ACS Symposium Series 560; Kovac, P., Ed.; American Chemical Society: Washington, DC, 1994; pp 19-50.
-
(1994)
ACS Symposium Series
, vol.560
, pp. 19-50
-
-
Petitou, M.1
-
7
-
-
0002676824
-
-
(b) Musser, J. H.; Anderson, M. B.; Fugedi, P. Pharm. News 1996, 3, 11.
-
(1996)
Pharm. News
, vol.3
, pp. 11
-
-
Musser, J.H.1
Anderson, M.B.2
Fugedi, P.3
-
10
-
-
33845185428
-
-
(a) Kahne, D.; Walker, S.; Cheng, Y.; Van Engen, D. J. Am. Chem. Soc. 1989, 111, 6881-6882.
-
(1989)
J. Am. Chem. Soc.
, vol.111
, pp. 6881-6882
-
-
Kahne, D.1
Walker, S.2
Cheng, Y.3
Van Engen, D.4
-
12
-
-
0027940051
-
-
(c) Kim, S.-H.; Augeri, D.; Yang, D.; Kahne, D. J. Am. Chem. Soc. 1994, 116, 1766-1775.
-
(1994)
J. Am. Chem. Soc.
, vol.116
, pp. 1766-1775
-
-
Kim, S.-H.1
Augeri, D.2
Yang, D.3
Kahne, D.4
-
13
-
-
0028207338
-
-
For recent solution-phase applications of the sulfoxide glycosylation method, see: (a) Silva, D. J.; Kahne, D.; Kraml, C. M. J. Am. Chem. Soc. 1994, 116, 2641-2642. (b) Lin, Y.; Kahne, D. J. Am. Chem. Soc. 1996, 118, 9239-9248. For solid-phase applications of this glycosylation method, see: (c) Yan, L.; Taylor, C. M.; Goodnow, R., Jr.; Kahne, D. J. Am. Chem. Soc. 1994, 116, 6953-6954. Liang, R.; Yan, L.; Loebach, J.; Ge, M.; Uozumi, Y.; Sekanina, K.; Horan, N.; Gildersleeve, J.; Thompson, C.; Smith, A.; Biswas, K.; Still, W. C.; Kahne, D. Science 1996, 274, 1520-1522.
-
(1994)
J. Am. Chem. Soc.
, vol.116
, pp. 2641-2642
-
-
Silva, D.J.1
Kahne, D.2
Kraml, C.M.3
-
14
-
-
0029904583
-
-
For recent solution-phase applications of the sulfoxide glycosylation method, see: (a) Silva, D. J.; Kahne, D.; Kraml, C. M. J. Am. Chem. Soc. 1994, 116, 2641-2642. (b) Lin, Y.; Kahne, D. J. Am. Chem. Soc. 1996, 118, 9239-9248. For solid-phase applications of this glycosylation method, see: (c) Yan, L.; Taylor, C. M.; Goodnow, R., Jr.; Kahne, D. J. Am. Chem. Soc. 1994, 116, 6953-6954. Liang, R.; Yan, L.; Loebach, J.; Ge, M.; Uozumi, Y.; Sekanina, K.; Horan, N.; Gildersleeve, J.; Thompson, C.; Smith, A.; Biswas, K.; Still, W. C.; Kahne, D. Science 1996, 274, 1520-1522.
-
(1996)
J. Am. Chem. Soc.
, vol.118
, pp. 9239-9248
-
-
Lin, Y.1
Kahne, D.2
-
15
-
-
0000508254
-
-
For recent solution-phase applications of the sulfoxide glycosylation method, see: (a) Silva, D. J.; Kahne, D.; Kraml, C. M. J. Am. Chem. Soc. 1994, 116, 2641-2642. (b) Lin, Y.; Kahne, D. J. Am. Chem. Soc. 1996, 118, 9239-9248. For solid-phase applications of this glycosylation method, see: (c) Yan, L.; Taylor, C. M.; Goodnow, R., Jr.; Kahne, D. J. Am. Chem. Soc. 1994, 116, 6953-6954. Liang, R.; Yan, L.; Loebach, J.; Ge, M.; Uozumi, Y.; Sekanina, K.; Horan, N.; Gildersleeve, J.; Thompson, C.; Smith, A.; Biswas, K.; Still, W. C.; Kahne, D. Science 1996, 274, 1520-1522.
-
(1994)
J. Am. Chem. Soc.
, vol.116
, pp. 6953-6954
-
-
Yan, L.1
Taylor, C.M.2
Goodnow R., Jr.3
Kahne, D.4
-
16
-
-
10544229790
-
-
For recent solution-phase applications of the sulfoxide glycosylation method, see: (a) Silva, D. J.; Kahne, D.; Kraml, C. M. J. Am. Chem. Soc. 1994, 116, 2641-2642. (b) Lin, Y.; Kahne, D. J. Am. Chem. Soc. 1996, 118, 9239-9248. For solid-phase applications of this glycosylation method, see: (c) Yan, L.; Taylor, C. M.; Goodnow, R., Jr.; Kahne, D. J. Am. Chem. Soc. 1994, 116, 6953-6954. Liang, R.; Yan, L.; Loebach, J.; Ge, M.; Uozumi, Y.; Sekanina, K.; Horan, N.; Gildersleeve, J.; Thompson, C.; Smith, A.; Biswas, K.; Still, W. C.; Kahne, D. Science 1996, 274, 1520-1522.
-
(1996)
Science
, vol.274
, pp. 1520-1522
-
-
Liang, R.1
Yan, L.2
Loebach, J.3
Ge, M.4
Uozumi, Y.5
Sekanina, K.6
Horan, N.7
Gildersleeve, J.8
Thompson, C.9
Smith, A.10
Biswas, K.11
Still, W.C.12
Kahne, D.13
-
17
-
-
0003454424
-
-
Oxford University Press: Oxford, U.K.
-
(a) Carbohydrate Chemistry, Kennedy, J. F., Ed.; Oxford University Press: Oxford, U.K., 1988; p 245.
-
(1988)
Carbohydrate Chemistry
, pp. 245
-
-
Kennedy, J.F.1
-
22
-
-
0022555860
-
-
(b) Hassel, J. R.; Kimura, J.; Hascall, V. C. Annu. Rev. Biochem. 1986, 55, 539.
-
(1986)
Annu. Rev. Biochem.
, vol.55
, pp. 539
-
-
Hassel, J.R.1
Kimura, J.2
Hascall, V.C.3
-
25
-
-
0026445723
-
-
(c) Lasky, L. A. Science 1992, 258, 964.
-
(1992)
Science
, vol.258
, pp. 964
-
-
Lasky, L.A.1
-
28
-
-
0032577049
-
-
Danishefsky and co-workers have made important contributions in this area based on the glycal technology. For example, reducing β-2-acetamido-1-amino-2-deoxyglucose derivatives were generated on solid phase using iodosulfonamidation of polymer-bound of glucals as a key step. The anomeric amino group was then coupled to diverse peptides using IIDQ as a coupling reagent.: (a) Roberge, J. Y.; Beebe, X.; Danishefsky, S. J. J. Am. Chem. Soc. 1998, 720, 3915-3927. More recently, these researchers developed a solid-phase sequence where a solid-phase bound glycal was converted in two steps to the ethylsulfanyl 2-phenylsulfonamido glycosyl donor, which was then coupled to different glycosyl acceptors using methyl triflate as a promoter. In this study the oligosaccharides were cleaved off the resin as the N-protected sulfonamides: (b) Zheng, C., Seeberger, P. H., Danishefsky, S. J. Angew. Chem., Int. Ed. Engl. 1998, 37, 786-789.
-
(1998)
J. Am. Chem. Soc.
, vol.720
, pp. 3915-3927
-
-
Roberge, J.Y.1
Beebe, X.2
Danishefsky, S.J.3
-
29
-
-
0031924817
-
-
Danishefsky and co-workers have made important contributions in this area based on the glycal technology. For example, reducing β-2- acetamido-1-amino-2-deoxyglucose derivatives were generated on solid phase using iodosulfonamidation of polymer-bound of glucals as a key step. The anomeric amino group was then coupled to diverse peptides using IIDQ as a coupling reagent.: (a) Roberge, J. Y.; Beebe, X.; Danishefsky, S. J. J. Am. Chem. Soc. 1998, 720, 3915-3927. More recently, these researchers developed a solid-phase sequence where a solid-phase bound glycal was converted in two steps to the ethylsulfanyl 2-phenylsulfonamido glycosyl donor, which was then coupled to different glycosyl acceptors using methyl triflate as a promoter. In this study the oligosaccharides were cleaved off the resin as the N-protected sulfonamides: (b) Zheng, C., Seeberger, P. H., Danishefsky, S. J. Angew. Chem., Int. Ed. Engl. 1998, 37, 786-789.
-
(1998)
Angew. Chem., Int. Ed. Engl.
, vol.37
, pp. 786-789
-
-
Zheng, C.1
Seeberger, P.H.2
Danishefsky, S.J.3
-
31
-
-
0344466745
-
-
Unpublished results
-
In the present article we only report on glucosamine-derived glycosyl donors. However, the use of 2-deoxy-2-trifluoroacetamido glycosyl sulfoxides as donors is general in nature, affording comparable results in the galactosamine and fucosamine series: Silva, D. J.; Sofia, M. J. Unpublished results.
-
-
-
Silva, D.J.1
Sofia, M.J.2
-
32
-
-
0344035609
-
-
Unpublished results
-
Methyl 3-azido-3-deoxy-4-O-methyl-β-D-glucopyranosiduronic acid was prepared in 10 steps from 1,2:5,6-di-O-isopropylidene-D-allofuranose: Jain, K. K., Sofia, M. J. Unpublished results.
-
-
-
Jain, K.K.1
Sofia, M.J.2
-
33
-
-
0345329558
-
-
note
-
We found that donor concentration had a dramatic effect on the yields of solid-phase sulfoxide glycosylations, with higher donor concentrations leading to higher glycosylation yields. For donor 5, best results were obtained with concentrations in the range of 0.06-0.3 M.
-
-
-
-
34
-
-
0344035608
-
-
Unpublished results
-
3, FmocNH, and NHTFAc groups, it is possible to conceive a deprotection - derivatization sequence for a library containing these three groups and consequently at least three diversity points. The Fmoc and TFAc groups could be deprotected under different basic conditions: mild treatment with piperidine in DMF would remove the Fmoc group exclusively and a posterior treatment with LiOH in MeOH-THF would cleanly remove the trifluoroacetamido group. The azido group could be independently unmasked under reducing conditions. This strategy is being currently pursued and will be reported in due time: Silva, D. J.; Sofia, M. J. Unpublished results.
-
-
-
Silva, D.J.1
Sofia, M.J.2
-
35
-
-
0344898517
-
-
note
-
Under the HATU coupling conditions used for amide formation, ester formation by the uncapped hydroxyl groups was virtually absent. In the cases where trace amounts of esters were indeed observed, they were selectively cleaved by posterior treatment with LiOH in THF-MeOH solution.
-
-
-
|