메뉴 건너뛰기




Volumn 11, Issue 3, 1999, Pages 352-357

MRNA polyadenylation and its coupling to other RNA processing reactions and to transcription

Author keywords

[No Author keywords available]

Indexed keywords

MESSENGER RNA;

EID: 0033151767     PISSN: 09550674     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0955-0674(99)80049-0     Document Type: Review
Times cited : (149)

References (52)
  • 1
    • 0030784958 scopus 로고    scopus 로고
    • Mechanism and regulation of mRNA polyadenylation
    • Colgan DF, Manley JL: Mechanism and regulation of mRNA polyadenylation. Genes Dev 1997, 11:2755-2766.
    • (1997) Genes Dev , vol.11 , pp. 2755-2766
    • Colgan, D.F.1    Manley, J.L.2
  • 2
    • 0030913309 scopus 로고    scopus 로고
    • A comparison of mammalian and yeast pre-mRNA 3′-end processing
    • Keller W, Minvielle-Sebastia L: A comparison of mammalian and yeast pre-mRNA 3′-end processing. Curr Opin Cell Biol 1997, 9:329-336.
    • (1997) Curr Opin Cell Biol , vol.9 , pp. 329-336
    • Keller, W.1    Minvielle-Sebastia, L.2
  • 3
    • 0030635047 scopus 로고    scopus 로고
    • The mechanism of 3′ cleavage and polyadenylation of eukaryotic pre-mRNA
    • Wahle E, Kühn U: The mechanism of 3′ cleavage and polyadenylation of eukaryotic pre-mRNA. Prog Nucleic Acid Res Mol Biol 1997, 57:41-71.
    • (1997) Prog Nucleic Acid Res Mol Biol , vol.57 , pp. 41-71
    • Wahle, E.1    Kühn, U.2
  • 4
    • 0030705196 scopus 로고    scopus 로고
    • RNA ligands selected by cleavage stimulation factor contain distinct sequence motifs that function as downstream elements in 3′-end processing of pre-mRNA
    • Beyer K, Dandekhar T, Keller W: RNA ligands selected by cleavage stimulation factor contain distinct sequence motifs that function as downstream elements in 3′-end processing of pre-mRNA. J Biol Chem 1997, 272:26769-26779.
    • (1997) J Biol Chem , vol.272 , pp. 26769-26779
    • Beyer, K.1    Dandekhar, T.2    Keller, W.3
  • 5
    • 0030920331 scopus 로고    scopus 로고
    • RNA recognition by the human polyadenylation factor CstF
    • Takagaki Y, Manley JL: RNA recognition by the human polyadenylation factor CstF. Mol Cell Biol 1997, 17:3907-3914.
    • (1997) Mol Cell Biol , vol.17 , pp. 3907-3914
    • Takagaki, Y.1    Manley, J.L.2
  • 6
    • 0032529163 scopus 로고    scopus 로고
    • The upstream sequence element of the C2 complement poly(A) signal activates mRNA 3′ end formation by two distinct mechanisms
    • Moreira A, Takagaki Y, Brackenridge S, Wollerton M, Manley JL, Proudfoot NJ: The upstream sequence element of the C2 complement poly(A) signal activates mRNA 3′ end formation by two distinct mechanisms. Genes Dev 1998, 12:2522-2534.
    • (1998) Genes Dev , vol.12 , pp. 2522-2534
    • Moreira, A.1    Takagaki, Y.2    Brackenridge, S.3    Wollerton, M.4    Manley, J.L.5    Proudfoot, N.J.6
  • 7
    • 0029991323 scopus 로고    scopus 로고
    • m involved in 3′ end processing of messenger RNA precursors
    • m involved in 3′ end processing of messenger RNA precursors. J Biol Chem 1996, 271:6107-6113.
    • (1996) J Biol Chem , vol.271 , pp. 6107-6113
    • Rüegsegger, U.1    Beyer, K.2    Keller, W.3
  • 8
    • 0031610366 scopus 로고    scopus 로고
    • m is related to spliceosomal SR proteins and can be reconstituted in vitro from recombinant subunits
    • m can exist in vivo in different dimeric forms to regulate cleavage.
    • (1998) Mol Cell , vol.1 , pp. 243-253
    • Rüegsegger, U.1    Blank, D.2    Keller, W.3
  • 9
    • 0029978731 scopus 로고    scopus 로고
    • Complex alternative RNA processing generates an unexpected diversity of poly(A) polymerase isoforms
    • Zhao W, Manley JL: Complex alternative RNA processing generates an unexpected diversity of poly(A) polymerase isoforms. Mol Cell Biol 1996, 16:2378-2386.
    • (1996) Mol Cell Biol , vol.16 , pp. 2378-2386
    • Zhao, W.1    Manley, J.L.2
  • 10
    • 0029857320 scopus 로고    scopus 로고
    • Cell-cycle related regulation of poly(A) polymerase by phosphorylation
    • Colgan DF, Murthy KGK, Prives C, Manley JL: Cell-cycle related regulation of poly(A) polymerase by phosphorylation. Nature 1996, 384:282-285.
    • (1996) Nature , vol.384 , pp. 282-285
    • Colgan, D.F.1    Murthy, K.G.K.2    Prives, C.3    Manley, J.L.4
  • 12
    • 0031866192 scopus 로고    scopus 로고
    • Deregulation of poly(A) polymerase interferes with cell growth
    • Zhao W, Manley JL: Deregulation of poly(A) polymerase interferes with cell growth. Mol Cell Biol 1998, 18:5010-5020.
    • (1998) Mol Cell Biol , vol.18 , pp. 5010-5020
    • Zhao, W.1    Manley, J.L.2
  • 13
    • 17344371397 scopus 로고    scopus 로고
    • Short GCG expansions in the PABP2 gene cause oculopharyngeal muscular dystrophy
    • Brais B, Bouchard JP, Xie YG, Rochefort DL, Chretien N, Tome FM, Lafreniere RG, Rommens JM, Uyama E, Nohira O et al.: Short GCG expansions in the PABP2 gene cause oculopharyngeal muscular dystrophy. Nat Genet 1998, 18:164-167. This is the first description of a genetic disease that is associated with a 3′-end processing factor. As little as one additional GCG triplet in the PABP2 gene may cause this type of muscular dystrophy. The mutated protein may accumulate in the cell nuclei as a consequence of the GCG expansions.
    • (1998) Nat Genet , vol.18 , pp. 164-167
    • Brais, B.1    Bouchard, J.P.2    Xie, Y.G.3    Rochefort, D.L.4    Chretien, N.5    Tome, F.M.6    Lafreniere, R.G.7    Rommens, J.M.8    Uyama, E.9    Nohira, O.10
  • 14
    • 0030003152 scopus 로고    scopus 로고
    • Signals sufficient for 3′-end formation of yeast mRNA
    • Guo Z, Sherman F: Signals sufficient for 3′-end formation of yeast mRNA. Mol Cell Biol 1996, 16:2772-2776.
    • (1996) Mol Cell Biol , vol.16 , pp. 2772-2776
    • Guo, Z.1    Sherman, F.2
  • 15
    • 1842410140 scopus 로고    scopus 로고
    • Sequence requirements of the bidirectional yeast TRP4 mRNA 3′-end formation signal
    • Egli CM, Duvel K, Trabesinger-Ruf N, Irniger S, Braus GH: Sequence requirements of the bidirectional yeast TRP4 mRNA 3′-end formation signal. Nucleic Acids Res 1997, 25:417-422.
    • (1997) Nucleic Acids Res , vol.25 , pp. 417-422
    • Egli, C.M.1    Duvel, K.2    Trabesinger-Ruf, N.3    Irniger, S.4    Braus, G.H.5
  • 16
    • 0032531703 scopus 로고    scopus 로고
    • Regulation of poly(A) site choice of several yeast mRNAs
    • Sparks KA, Dieckmann CL: Regulation of poly(A) site choice of several yeast mRNAs. Nucleic Acids Res 1998, 26:4676-4687.
    • (1998) Nucleic Acids Res , vol.26 , pp. 4676-4687
    • Sparks, K.A.1    Dieckmann, C.L.2
  • 17
    • 0028922913 scopus 로고
    • A complex unidirectional signal element mediates GCN4 mRNA 3′ end formation in Saccharomyces cerevisiae
    • Egli CM, Springer C, Braus GH: A complex unidirectional signal element mediates GCN4 mRNA 3′ end formation in Saccharomyces cerevisiae. Mol Cell Biol 1995, 15:2466-2473.
    • (1995) Mol Cell Biol , vol.15 , pp. 2466-2473
    • Egli, C.M.1    Springer, C.2    Braus, G.H.3
  • 18
    • 0029910068 scopus 로고    scopus 로고
    • Purification of the Saccharomyces cerevisiae cleavage/polyadenylation factor I
    • Kessler MM, Zhao J, Moore CL: Purification of the Saccharomyces cerevisiae cleavage/polyadenylation factor I. J Biol Chem 1996, 271:27167-27175.
    • (1996) J Biol Chem , vol.271 , pp. 27167-27175
    • Kessler, M.M.1    Zhao, J.2    Moore, C.L.3
  • 19
    • 0030800231 scopus 로고    scopus 로고
    • The major yeast poly(A)-binding protein is associated with cleavage factor IA and functions in pre-messenger RNA 3′-end formation
    • Minvielle-Sebastia L, Preker PJ, Wiederkehr T, Strahm Y, Keller W: The major yeast poly(A)-binding protein is associated with cleavage factor IA and functions in pre-messenger RNA 3′-end formation. Proc Natl Acad Sci USA 1997, 94:7897-7902. The articles [19•,20,21•] and [30•] report the characterization and cloning of all components of yeast CF IA. The authors of the papers [19•] and [30•] found that Pab1p is required for poly(A) tail length control in yeast. Besides its important function in translation and mRNA stability, this was the first description of a nuclear role for Pab1p.
    • (1997) Proc Natl Acad Sci USA , vol.94 , pp. 7897-7902
    • Minvielle-Sebastia, L.1    Preker, P.J.2    Wiederkehr, T.3    Strahm, Y.4    Keller, W.5
  • 20
    • 0028589505 scopus 로고
    • RNA14 and RNA15 proteins as components of a yeast pre-mRNA 3′-end processing factor
    • Minvielle-Sebastia L, Preker PJ, Keller W: RNA14 and RNA15 proteins as components of a yeast pre-mRNA 3′-end processing factor. Science 1994, 266:1702-1705.
    • (1994) Science , vol.266 , pp. 1702-1705
    • Minvielle-Sebastia, L.1    Preker, P.J.2    Keller, W.3
  • 21
    • 0031024993 scopus 로고    scopus 로고
    • PCF11 encodes a third protein component of the yeast cleavage and polyadenylation factor I
    • Amrani N, Minet M, Wyers F, Dufour M-E, Aggerbeck LP, Lacroute F: PCF11 encodes a third protein component of the yeast cleavage and polyadenylation factor I. Mol Cell Biol 1997, 17:1102-1109. Pcf11p was found associated with both Rna14p and Rna15p in a two-hybrid screen. Extracts prepared from mutant pcf11 are inactive for cleavage and polyadenylation, indicating that Pcf11p belongs to CF I.
    • (1997) Mol Cell Biol , vol.17 , pp. 1102-1109
    • Amrani, N.1    Minet, M.2    Wyers, F.3    Dufour, M.-E.4    Aggerbeck, L.P.5    Lacroute, F.6
  • 22
    • 0028028266 scopus 로고
    • A polyadenylation factor subunit is the human homologue of the Drosophila suppressor of forked protein
    • Takagaki Y, Manley JL: A polyadenylation factor subunit is the human homologue of the Drosophila suppressor of forked protein. Nature 1994, 372:471-474.
    • (1994) Nature , vol.372 , pp. 471-474
    • Takagaki, Y.1    Manley, J.L.2
  • 23
    • 0030803670 scopus 로고    scopus 로고
    • Hrp1, a sequence-specific RNA-binding protein that shuttles between the nucleus and the cytoplasm, is required for mRNA 3′-end formation in yeast
    • Kessler MM, Henry MF, Shen E, Zhao J, Gross S, Silver PA, Moore CL: Hrp1, a sequence-specific RNA-binding protein that shuttles between the nucleus and the cytoplasm, is required for mRNA 3′-end formation in yeast. Genes Dev 1997, 11:2545-2556. This essential component of the yeast polyadenylation machinery might suggest a link between 3′-end processing and the nucleocytoplasmic export of mRNAs.
    • (1997) Genes Dev , vol.11 , pp. 2545-2556
    • Kessler, M.M.1    Henry, M.F.2    Shen, E.3    Zhao, J.4    Gross, S.5    Silver, P.A.6    Moore, C.L.7
  • 24
    • 0032535492 scopus 로고    scopus 로고
    • Control of cleavage site selection during mRNA 3′-end formation by a yeast hnRNP
    • Minvielle-Sebastia L, Beyer K, Krecic AM, Hector RE, Swanson MS, Keller W: Control of cleavage site selection during mRNA 3′-end formation by a yeast hnRNP. BMBO J 1998, 17:7454-7468. This paper demonstrates that the yeast hnRNP Nab4p/Hrp1p is not an essential cleavage factor but functions to select the correct poly(A) site. The protein may thus be involved in regulating alternative polyadenylation in yeast.
    • (1998) BMBO J , vol.17 , pp. 7454-7468
    • Minvielle-Sebastia, L.1    Beyer, K.2    Krecic, A.M.3    Hector, R.E.4    Swanson, M.S.5    Keller, W.6
  • 25
    • 0030855457 scopus 로고    scopus 로고
    • Premature 3′-end formation of CBP1 mRNA results in the downregulation of cytochrome b mRNA during the induction of respiration in saccharomyces cerevisiae
    • Sparks KA, Mayer SA, Dieckmann CL: Premature 3′-end formation of CBP1 mRNA results in the downregulation of cytochrome b mRNA during the induction of respiration in saccharomyces cerevisiae. Mol Cell Biol 1997, 17:4199-4207. The two CBP1 mRNAs are reciprocally regulated by the carbon source; however, the shorter mRNA does not seem to produce a polypeptide although it is found associated with polysomes. This study provides insights into the regulatory mechanism of some genes by alternative polyadenylation.
    • (1997) Mol Cell Biol , vol.17 , pp. 4199-4207
    • Sparks, K.A.1    Mayer, S.A.2    Dieckmann, C.L.3
  • 26
    • 0032213290 scopus 로고    scopus 로고
    • A specific RNA-protein interaction at yeast polyadenylation efficiency elements
    • Chen S, Hyman LE: A specific RNA-protein interaction at yeast polyadenylation efficiency elements. Nucleic Acids Res 1998, 26:4965-4974.
    • (1998) Nucleic Acids Res , vol.26 , pp. 4965-4974
    • Chen, S.1    Hyman, L.E.2
  • 27
    • 0033065488 scopus 로고    scopus 로고
    • Arginine methylation and binding of Hrp1p to the efficiency element for mRNA 3′-end formation
    • Valentini SR, Weiss VH, Silver PA: Arginine methylation and binding of Hrp1p to the efficiency element for mRNA 3′-end formation. RNA 1999, 5:1-9.
    • (1999) RNA , vol.5 , pp. 1-9
    • Valentini, S.R.1    Weiss, V.H.2    Silver, P.A.3
  • 28
    • 0032030939 scopus 로고    scopus 로고
    • Arginine methylation facilitates the nuclear export of hnRNP proteins
    • Shen EC, Henry MF, Weiss VH, Valentini SR, Silver PA, Lee MS: Arginine methylation facilitates the nuclear export of hnRNP proteins. Genes Dev 1998, 12:679-691. This is the first in vivo demonstration that the nucleocytoplasmic shuttling of some hnRNPs requires methylation of arginines. This modification seems to be also important for these proteins to export mRNAs from the nucleus.
    • (1998) Genes Dev , vol.12 , pp. 679-691
    • Shen, E.C.1    Henry, M.F.2    Weiss, V.H.3    Valentini, S.R.4    Silver, P.A.5    Lee, M.S.6
  • 29
    • 0032086357 scopus 로고    scopus 로고
    • Influenza virus NS1 protein interacts with the cellular 30 kDa subunit of CPSF and inhibits 3′end formation of cellular pre-mRNAs
    • Nemeroff ME, Barabino SML, Li Y, Keller W, Krug RM: Influenza virus NS1 protein interacts with the cellular 30 kDa subunit of CPSF and inhibits 3′end formation of cellular pre-mRNAs. Mol Cell 1998, 1:991-1000. This study shows that the influenza A virus NS1 protein inhibits the export of the host cell mRNAs. It directly interacts with CPSF-30K which prevents pre-mRNA 3′-end processing.
    • (1998) Mol Cell , vol.1 , pp. 991-1000
    • Nemeroff, M.E.1    Barabino, S.M.L.2    Li, Y.3    Keller, W.4    Krug, R.M.5
  • 30
    • 0031011852 scopus 로고    scopus 로고
    • Yeast Pab1 interacts with Rna15 and participates in the control of the poly(A) tail length in vitro
    • Amrani N, Minet M, Le Gouar M, Lacroute F, Wyers F: Yeast Pab1 interacts with Rna15 and participates in the control of the poly(A) tail length in vitro. Mol Cell Biol 1997, 17:3694-3701. As mentioned before in [19•], this study describes a role for Pab1p in 3′-end formation. It also shows that Rna15p and Pab1p interact with each other.
    • (1997) Mol Cell Biol , vol.17 , pp. 3694-3701
    • Amrani, N.1    Minet, M.2    Le Gouar, M.3    Lacroute, F.4    Wyers, F.5
  • 31
    • 0031740339 scopus 로고    scopus 로고
    • Poly(A) tail length control in Saccharomyces cerevisiae occurs by message-specific deadenylation
    • Brown CE, Sachs AB: Poly(a) tail length control in Saccharomyces cerevisiae occurs by message-specific deadenylation. Mol Cell Biol 1998, 18:6548-6559. This study suggests that the Pab1p-dependent poly(A) nuclease (PAN) is required for poly(A) length control in vitro. The deadenylase is responsible for producing message-specific poly(A) tail lengths.
    • (1998) Mol Cell Biol , vol.18 , pp. 6548-6559
    • Brown, C.E.1    Sachs, A.B.2
  • 32
    • 0030789421 scopus 로고    scopus 로고
    • A multisubunit 3′-end processing factor from yeast containing poly(A) polymerase and homologues of the subunits of mammalian cleavage and polyadenylation specificity factor
    • Preker PJ, Ohnacker M, Minvielle-Sebastia L, Keller W: A multisubunit 3′-end processing factor from yeast containing poly(A) polymerase and homologues of the subunits of mammalian cleavage and polyadenylation specificity factor. EMBO J 1997, 16:4727-4737. Describes the purification of an unexpectedly large complex of nine polypeptides having Polyadenylation Factor I activity. Remarkably, this factor contains Pap1p and four subunits that share significant homology with mammalian CPSF.
    • (1997) EMBO J , vol.16 , pp. 4727-4737
    • Preker, P.J.1    Ohnacker, M.2    Minvielle-Sebastia, L.3    Keller, W.4
  • 33
    • 1842329727 scopus 로고    scopus 로고
    • The 30-kD subunit of mammalian cleavage and polyadenylation specificity factor and its yeast homolog are RNA-binding zinc finger proteins
    • Barabino SML, Hübner W, Jenny A, Minvielle-Sebastia L, Keller W: The 30-kD subunit of mammalian cleavage and polyadenylation specificity factor and its yeast homolog are RNA-binding zinc finger proteins. Genes Dev 1997, 11:1703-1716. Cloning of the smallest subunit of CPSF and of its yeast counterpart. These proteins carry zinc-finger domains that could account for the RNA binding specificities of the polypeptides.
    • (1997) Genes Dev , vol.11 , pp. 1703-1716
    • Barabino, S.M.L.1    Hübner, W.2    Jenny, A.3    Minvielle-Sebastia, L.4    Keller, W.5
  • 34
    • 0029806688 scopus 로고    scopus 로고
    • The end of the message - Another link between yeast and mammals
    • Manley JL, Takagaki Y: The end of the message - Another link between yeast and mammals. Science 1996, 274:1481-1482.
    • (1996) Science , vol.274 , pp. 1481-1482
    • Manley, J.L.1    Takagaki, Y.2
  • 35
    • 0030964086 scopus 로고    scopus 로고
    • Cleavage factor II of Saccharomyces cerevisiae contains homologues to subunits of the mammalian cleavage/polyadenylation specificity factor and exhibits sequence-specific, ATP-dependent interaction with precursor RNA
    • Zhao J, Kessler MM, Moore CL: Cleavage factor II of Saccharomyces cerevisiae contains homologues to subunits of the mammalian cleavage/polyadenylation specificity factor and exhibits sequence-specific, ATP-dependent interaction with precursor RNA. J Biol Chem 1997, 272:10831-10838. This paper describes the purification of the so-called cleavage factor II, the last factor that remained uncharacterized. It shows that three of the four components are homologous to CPSF-160K, -100K, and -73K. This result suggests that PF I as described in [32••] contains both cleavage and polyadenylation activities.
    • (1997) J Biol Chem , vol.272 , pp. 10831-10838
    • Zhao, J.1    Kessler, M.M.2    Moore, C.L.3
  • 36
    • 0028173689 scopus 로고
    • The human U1A snRNP protein regulates polyadenylation via a direct interaction with poly(A) polymerase
    • Gunderson SI, Beyer K, Martin G, Keller W, Boelens WC, Mattaj IW: The human U1A snRNP protein regulates polyadenylation via a direct interaction with poly(A) polymerase. Cell 1994, 76:531-541.
    • (1994) Cell , vol.76 , pp. 531-541
    • Gunderson, S.I.1    Beyer, K.2    Martin, G.3    Keller, W.4    Boelens, W.C.5    Mattaj, I.W.6
  • 37
    • 0030024350 scopus 로고    scopus 로고
    • Interaction between the U1 snRNP-A protein and the 160-kD subunit of cleavage-polyadenylation specificity factor increases polyadenylation efficiency in vitro
    • Lutz CS, Murthy KGK, Schek N, O'Connor JP, Manley JL, Alwine JC: Interaction between the U1 snRNP-A protein and the 160-kD subunit of cleavage-polyadenylation specificity factor increases polyadenylation efficiency in vitro. Genes Dev 1996, 10:325-337.
    • (1996) Genes Dev , vol.10 , pp. 325-337
    • Lutz, C.S.1    Murthy, K.G.K.2    Schek, N.3    O'Connor, J.P.4    Manley, J.L.5    Alwine, J.C.6
  • 38
    • 0031004560 scopus 로고    scopus 로고
    • Involvement of the carboxyl terminus of vertebrate poly(A) polymerase in U1A autoregulation and in the coupling of splicing and polyadenylation
    • Gunderson SI, Vagner S, Polycarpou-Schwarz M, Mattaj IW: Involvement of the carboxyl terminus of vertebrate poly(A) polymerase in U1A autoregulation and in the coupling of splicing and polyadenylation. Genes Dev 1997, 11:761-773. Precise mapping of the regions of interaction between poly(A) polymerase and U1A required for autoregulation of U1A protein synthesis. The results also suggest that a direct coupling between splicing and polyadenylation requires the carboxy-terminal part of PAP.
    • (1997) Genes Dev , vol.11 , pp. 761-773
    • Gunderson, S.I.1    Vagner, S.2    Polycarpou-Schwarz, M.3    Mattaj, I.W.4
  • 39
    • 0031610367 scopus 로고    scopus 로고
    • U1 snRNP inhibits pre-mRNA polyadenylation through a direct interaction between U1 70K and poly(A) polymerase
    • Gunderson SI, Polycarpou-Schwarz M, Mattaj IW: U1 snRNP inhibits pre-mRNA polyadenylation through a direct interaction between U1 70K and poly(A) polymerase. Mol Cell 1998, 1:255-264. Another example of regulation by the U1 snRNP identified in the bovine papilloma virus late gene expression. Binding of this protein factor to a sequence element similar to a 5′ splice site inhibits polyadenylation of the adjacent polyadenylation signal. This inhibition occurs by interaction between U1 70K and PAP. Inhibition of PAP may thus be a general regulation mechanism.
    • (1998) Mol Cell , vol.1 , pp. 255-264
    • Gunderson, S.I.1    Polycarpou-Schwarz, M.2    Mattaj, I.W.3
  • 40
    • 0032167935 scopus 로고    scopus 로고
    • Transcriptional termination in the Balbiani ring 1 gene is closely coupled to 3′-end formation and excision of the 3′-terminal intron
    • Bauren G, Belikov S, Wieslander L: Transcriptional termination in the Balbiani ring 1 gene is closely coupled to 3′-end formation and excision of the 3′-terminal intron. Genes Dev 1998, 12:2759-2769.
    • (1998) Genes Dev , vol.12 , pp. 2759-2769
    • Bauren, G.1    Belikov, S.2    Wieslander, L.3
  • 41
    • 0032541403 scopus 로고    scopus 로고
    • Poly(A) signals control both transcriptional termination and initiation between the tandem GAL10 and GAL7 genes of Saccharomyces cerevisiae
    • Greger IH, Proudfoot NJ: Poly(a) signals control both transcriptional termination and initiation between the tandem GAL10 and GAL7 genes of Saccharomyces cerevisiae. EMBO J 1998, 17:4771-4779.
    • (1998) EMBO J , vol.17 , pp. 4771-4779
    • Greger, I.H.1    Proudfoot, N.J.2
  • 42
    • 0032502825 scopus 로고    scopus 로고
    • Cleavage of the primary transcript couples 3′-end RNA-processing with termination of pol II transcription
    • Birse CE, Minvielle-Sebastia L, Lee BA, Keller W, Proudfoot NJ: Cleavage of the primary transcript couples 3′-end RNA-processing with termination of pol II transcription. Science 1998, 280:298-301. This study demonstrates that efficient termination of transcription requires a functional cleavage activity in yeast. Polyadenylation mutants do not seem to affect pol II termination. These results show that the coupling of 3′ processing and transcription requires efficient cleavage of the pre-mRNA.
    • (1998) Science , vol.280 , pp. 298-301
    • Birse, C.E.1    Minvielle-Sebastia, L.2    Lee, B.A.3    Keller, W.4    Proudfoot, N.J.5
  • 43
    • 0031037856 scopus 로고    scopus 로고
    • The C-terminal domain of RNA polymerase II couples mRNA processing to transcription
    • McCracken S, Fong N, Yankulov K, Ballantyne S, Pan G, Greenblatt J, Patterson SD, Wickens M, Bentley DL: The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature 1997, 385:357-361. The four papers [43••-46••] show direct interactions of pre-mRNA processing factors with the RNA polymerase II carboxy-terminal domain (CTD). This paper was the first to show that CPSF and CstF are found associated with the CTD of pol II, providing insights into the mechanism of coupling between polyadenylation and transcription.
    • (1997) Nature , vol.385 , pp. 357-361
    • McCracken, S.1    Fong, N.2    Yankulov, K.3    Ballantyne, S.4    Pan, G.5    Greenblatt, J.6    Patterson, S.D.7    Wickens, M.8    Bentley, D.L.9
  • 44
    • 15644372864 scopus 로고    scopus 로고
    • 5′-capping enzymes are targeted to pre-mRNA by binding to the phosphorylated carboxy-terminal domain of RNA polymerase II
    • McCracken S, Fong N, Rosonina E, Yankulov K, Brothers G, Siderovski D, Hessel A, Foster S, Shuman S, Bentley DL: 5′-capping enzymes are targeted to pre-mRNA by binding to the phosphorylated carboxy-terminal domain of RNA polymerase II. Genes Dev 1997, 11:3306-3318. The association of the capping enzymes with the phosphorylated CTD of pol II is required for efficient pre-mRNA capping. This study and [45••] arrive at the same conclusions.
    • (1997) Genes Dev , vol.11 , pp. 3306-3318
    • McCracken, S.1    Fong, N.2    Rosonina, E.3    Yankulov, K.4    Brothers, G.5    Siderovski, D.6    Hessel, A.7    Foster, S.8    Shuman, S.9    Bentley, D.L.10
  • 45
    • 0031453408 scopus 로고    scopus 로고
    • mRNA capping enzyme is recruited to the transcription complex by phosphorylation of the RNA polymerase II carboxy-terminal domain
    • Cho EJ, Takagi T, Moore CR, Buratowski S: mRNA capping enzyme is recruited to the transcription complex by phosphorylation of the RNA polymerase II carboxy-terminal domain. Genes Dev 1997, 11:3319-3326. As reported in [44••], the authors show that the pol II associates with the capping enzymes, the RNA guanylyltransferase and methyltransferase. Both studies suggest a coupling between mRNA capping and pol II initiation of transcription.
    • (1997) Genes Dev , vol.11 , pp. 3319-3326
    • Cho, E.J.1    Takagi, T.2    Moore, C.R.3    Buratowski, S.4
  • 46
    • 0030798246 scopus 로고    scopus 로고
    • Transcription factor TFIID recruits factor CPSF for formation of 3′ end of mRNA
    • Dantonel J-C, Murthy KGK, Manley JL, Tora L: Transcription factor TFIID recruits factor CPSF for formation of 3′ end of mRNA. Nature 1997, 389:399-402. This study shows that the association of CPSF with the transcriptional machinery occurs very early in transcription with the factor TFIID of the pre-initiation complex. Then, CPSF associates with the elongating pol II.
    • (1997) Nature , vol.389 , pp. 399-402
    • Dantonel, J.-C.1    Murthy, K.G.K.2    Manley, J.L.3    Tora, L.4
  • 47
    • 0032480229 scopus 로고    scopus 로고
    • RNA polymerase II is an essential mRNA polyadenylation factor
    • Hirose Y, Manley JL: RNA polymerase II is an essential mRNA polyadenylation factor. Nature 1998, 395:93-96. Evidence is provided that the pol II CTD behaves as a 3′-end processing cofactor. In its presence, the cleavage activity is strongly enhanced, with no requirement for ongoing transcription.
    • (1998) Nature , vol.395 , pp. 93-96
    • Hirose, Y.1    Manley, J.L.2
  • 48
    • 0030711724 scopus 로고    scopus 로고
    • Participation of the nuclear cap binding complex in pre-mRNA 3′ processing
    • Flaherty SM, Fortes P, Izaurralde E, Mattaj IW, Gilmartin GM: Participation of the nuclear cap binding complex in pre-mRNA 3′ processing. Proc Natl Acad Sci USA 1997, 94:11893-11898. This study shows that connections between the 5′ and the 3′ ends of a pre-mRNA can enhance 3′-end processing. The cap-binding complex does not seem to be essential for cleavage but is required to enhance its efficiency. This report provides yet another link between capping, splicing, and 3′-end processing.
    • (1997) Proc Natl Acad Sci USA , vol.94 , pp. 11893-11898
    • Flaherty, S.M.1    Fortes, P.2    Izaurralde, E.3    Mattaj, I.W.4    Gilmartin, G.M.5
  • 49
    • 0032246188 scopus 로고    scopus 로고
    • Levels of polyadenylation factor CstF-64 control IgM heavy chain mRNA accumulation and other events associated with B cell differentiation
    • Takagaki Y, Manley JL: Levels of polyadenylation factor CstF-64 control IgM heavy chain mRNA accumulation and other events associated with B cell differentiation. Mol Cell 1998, 2:761-771. The data reported in this article support the previous prediction by the authors that changes in the levels of a single 3′-end processing polypeptide, CstF-64K, can explain the switch in the synthesis from membrane-bound to secreted forms of IgM during B-cell differentiation. Depletion of the protein can even lead to cell death.
    • (1998) Mol Cell , vol.2 , pp. 761-771
    • Takagaki, Y.1    Manley, J.L.2
  • 50
    • 0032530794 scopus 로고    scopus 로고
    • 0 to S phase transition
    • 0 to S phase transition. Proc Natl Acad Sci USA 1998, 95:11095-11100. In contradiction to [49•], the authors show that the CstF-64K levels can change no matter whether the B cells differentiate or not. As variation of the CstF-64K concentration is not correlated with the production of the secretory-specific IgM mRNA, they suggest that another factor is required.
    • (1998) Proc Natl Acad Sci USA , vol.95 , pp. 11095-11100
    • Martincic, K.1    Campbell, R.2    Edwalds-Gilbert, G.3    Souan, L.4    Lotze, M.T.5    Milcarek, C.6
  • 51
    • 0031840978 scopus 로고    scopus 로고
    • Regulation of alternative polyadenylation by U1 snRNPs and SRp20
    • Lou H, Neugebauer KM, Gagel RF, Berget SM: Regulation of alternative polyadenylation by U1 snRNPs and SRp20. Mol Cell Biol 1998, 18:4977-4985.
    • (1998) Mol Cell Biol , vol.18 , pp. 4977-4985
    • Lou, H.1    Neugebauer, K.M.2    Gagel, R.F.3    Berget, S.M.4
  • 52
    • 0032564397 scopus 로고    scopus 로고
    • Autoregulation at the level of mRNA 3′ end formation of the suppressor of forked gene of Drosophila melanogaster is conserved in Drosophila virilis
    • AUdibert A, Simonelig M: Autoregulation at the level of mRNA 3′ end formation of the suppressor of forked gene of Drosophila melanogaster is conserved in Drosophila virilis. Proc Natl Acad Sci USA 1998, 95:14302-14307.
    • (1998) Proc Natl Acad Sci USA , vol.95 , pp. 14302-14307
    • Audibert, A.1    Simonelig, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.