-
4
-
-
0030810994
-
-
d) C. C. Moser, C. C. Page, X. Chen, P. L. Dutton, ibid. 1997, 2, 393;
-
(1997)
J. Biol. Inorg. Chem.
, vol.2
, pp. 393
-
-
Moser, C.C.1
Page, C.C.2
Chen, X.3
Dutton, P.L.4
-
6
-
-
0030994854
-
-
a) D. N. Beratan, S. Priyadarshy, S. M. Risser, Chem. Biol. 1997, 4, 3;
-
(1997)
Chem. Biol.
, vol.4
, pp. 3
-
-
Beratan, D.N.1
Priyadarshy, S.2
Risser, S.M.3
-
9
-
-
0031054667
-
-
d) G. Taubes, Science 1997, 275, 1420;
-
(1997)
Science
, vol.275
, pp. 1420
-
-
Taubes, G.1
-
10
-
-
0000454647
-
-
e) U. Diederichsen, Angew. Chem. 1997, 109, 2411; Angew. Chem. Int. Ed. Engl. 1997, 36, 2317.
-
(1997)
Angew. Chem.
, vol.109
, pp. 2411
-
-
Diederichsen, U.1
-
11
-
-
0030694011
-
-
e) U. Diederichsen, Angew. Chem. 1997, 109, 2411; Angew. Chem. Int. Ed. Engl. 1997, 36, 2317.
-
(1997)
Angew. Chem. Int. Ed. Engl.
, vol.36
, pp. 2317
-
-
-
12
-
-
0027769742
-
-
a) C. J. Murphy, M. R. Arkin, Y. Jenkins, N. D. Ghatlia, S. H. Bossmann, N. J. Turro, J. K. Barton, Science 1993, 262, 1025;
-
(1993)
Science
, vol.262
, pp. 1025
-
-
Murphy, C.J.1
Arkin, M.R.2
Jenkins, Y.3
Ghatlia, N.D.4
Bossmann, S.H.5
Turro, N.J.6
Barton, J.K.7
-
13
-
-
0029846245
-
-
b) M. R. Arkin, E. D. A. Stemp, R. E. Holmlin, J. K. Barton, A. Hörmann, E. J. C. Olson, P. F. Barbara, ibid. 1996, 273, 475;
-
(1996)
Science
, vol.273
, pp. 475
-
-
Arkin, M.R.1
Stemp, E.D.A.2
Holmlin, R.E.3
Barton, J.K.4
Hörmann, A.5
Olson, E.J.C.6
Barbara, P.F.7
-
14
-
-
0029833916
-
-
c) D. B. Hall, R. E. Holmlin, J. K. Barton, Nature 1996, 382, 731;
-
(1996)
Nature
, vol.382
, pp. 731
-
-
Hall, D.B.1
Holmlin, R.E.2
Barton, J.K.3
-
15
-
-
0031149127
-
-
d) M. R. Arkin, E. D. A. Stemp, S. Coates-Pulver, J. K. Barton, Chem. & Biol. 1997, 4, 389;
-
(1997)
Chem. & Biol.
, vol.4
, pp. 389
-
-
Arkin, M.R.1
Stemp, E.D.A.2
Coates-Pulver, S.3
Barton, J.K.4
-
16
-
-
1842330888
-
-
e) P. J. Dandliker, R. E. Holmlin, J. K. Barton, Science 1997, 275, 1465;
-
(1997)
Science
, vol.275
, pp. 1465
-
-
Dandliker, P.J.1
Holmlin, R.E.2
Barton, J.K.3
-
17
-
-
0030665685
-
-
f) S. O. Kelley, R. E. Holmlin, E. D. A. Stemp, J. K. Barton, J. Am. Chem. Soc. 1997, 119, 9861;
-
(1997)
J. Am. Chem. Soc.
, vol.119
, pp. 9861
-
-
Kelley, S.O.1
Holmlin, R.E.2
Stemp, E.D.A.3
Barton, J.K.4
-
18
-
-
0000843657
-
-
g) review: R. E. Holmlin, P. J. Dandliker, J. K. Barton, Angew. Chem. 1997, 109, 2830; Angew. Chem. Int. Ed. Engl. 1997, 36, 2715.
-
(1997)
Angew. Chem.
, vol.109
, pp. 2830
-
-
Holmlin, R.E.1
Dandliker, P.J.2
Barton, J.K.3
-
19
-
-
0000465490
-
-
g) review: R. E. Holmlin, P. J. Dandliker, J. K. Barton, Angew. Chem. 1997, 109, 2830; Angew. Chem. Int. Ed. Engl. 1997, 36, 2715.
-
(1997)
Angew. Chem. Int. Ed. Engl.
, vol.36
, pp. 2715
-
-
-
20
-
-
0030820847
-
-
a) F. D. Lewis, T. Wu, Y. Zhang, R. L. Letsinger, S. R. Greenfield, M. R. Wasielewski, Science 1997, 277, 673;
-
(1997)
Science
, vol.277
, pp. 673
-
-
Lewis, F.D.1
Wu, T.2
Zhang, Y.3
Letsinger, R.L.4
Greenfield, S.R.5
Wasielewski, M.R.6
-
23
-
-
0001316772
-
-
d) T. J. Meade, J. F. Kayyem, Angew. Chem. 1995, 107, 358; Angew. Chem. Int. Ed. Engl. 1995, 34, 352.
-
(1995)
, vol.107
, pp. 358
-
-
Meade, T.J.1
Kayyem, J.F.2
Chem, A.3
-
24
-
-
0029104810
-
-
d) T. J. Meade, J. F. Kayyem, Angew. Chem. 1995, 107, 358; Angew. Chem. Int. Ed. Engl. 1995, 34, 352.
-
(1995)
Angew. Chem. Int. Ed. Engl.
, vol.34
, pp. 352
-
-
-
25
-
-
0000262774
-
-
a) C. von Sonntag, U. Hagen, A.-M. Schön-Bopp, D. Schulte-Frohlinde, Adv. Radiat. Biol. 1981, 9, 109;
-
(1981)
Adv. Radiat. Biol.
, vol.9
, pp. 109
-
-
Von Sonntag, C.1
Hagen, U.2
Schön-Bopp, A.-M.3
Schulte-Frohlinde, D.4
-
26
-
-
0029310521
-
-
b) B. Giese, X. Beyrich-Graf, P. Erdmann, M. Petretta, U. Schwitter, Chem. Biol. 1995, 2, 367;
-
(1995)
Chem. Biol.
, vol.2
, pp. 367
-
-
Giese, B.1
Beyrich-Graf, X.2
Erdmann, P.3
Petretta, M.4
Schwitter, U.5
-
27
-
-
0030929539
-
-
c) A. Gugger, R. Batra, P. Rzadek, G. Rist, B. Giese, J. Am. Chem. Soc. 1997, 119, 8740.
-
(1997)
J. Am. Chem. Soc.
, vol.119
, pp. 8740
-
-
Gugger, A.1
Batra, R.2
Rzadek, P.3
Rist, G.4
Giese, B.5
-
28
-
-
0029773892
-
-
a) GC base pairs have lower oxidation potentials than AT base pairs: H. Sugiyama, I. Saito, J. Am. Chem. Soc. 1996, 118, 7063;
-
(1996)
J. Am. Chem. Soc.
, vol.118
, pp. 7063
-
-
Sugiyama, H.1
Saito, I.2
-
31
-
-
0029797028
-
-
d) D. Ly, Y. Kan, B. Armitage, G. B. Schuster, ibid. 1996, 118, 8747;
-
(1996)
J. Am. Chem. Soc.
, vol.118
, pp. 8747
-
-
Ly, D.1
Kan, Y.2
Armitage, B.3
Schuster, G.B.4
-
32
-
-
29544444893
-
-
e) I. Saito, M. Takayama, H. Sugiyama, K. Nakatani, ibid. 1995, 117, 6406;
-
(1995)
J. Am. Chem. Soc.
, vol.117
, pp. 6406
-
-
Saito, I.1
Takayama, M.2
Sugiyama, H.3
Nakatani, K.4
-
35
-
-
33748366270
-
-
In the course of this ET step G must be oxidized to a radical cation that is known to undergo a fast deprotonation step yielding a very unreactive delocalized G radical. Since we cannot detect any damage at G sites, we assume that the G radical is repaired by hydrogen atom abstraction under anaerobic conditions. For structure, reactivity, and repair of deoxyguanosine radical cations, see: a) S. Steenken, Chem. Rev. 1989, 89, 503;
-
(1989)
Chem. Rev.
, vol.89
, pp. 503
-
-
Steenken, S.1
-
38
-
-
1842731440
-
-
note
-
G triple units were chosen for the experiments on the distance dependence because they are the most potent electron donating sites in DNA (see ref. [6]). We suppose that the closest G is the initially oxidized base. This assumption is permitted since the change from a single G to a triple G unit in 3′- as well as in 5′-direction has nearly the same ET-acceleration effect of 2.5 and 1.8, respectively (Table 1, entries 8, 11, and 9, 12).
-
-
-
-
39
-
-
1842730974
-
-
note
-
For the determination of the distance Δr, the corresponding DNA duplex sequences were constructed in the B-form with the nucleic acid building tool in the program MacroModel V4.5. In order to mimic the planar enol ether radical cation 3, the deoxyribose enol ether 5 was modeled into the DNA structure using the AMBER* force field implemented in MacroModel V4.5. Distances Δr were taken between the radical center C3′ of the radical cation and the G carbon atom 5 which has the highest electron density of the HOMO.
-
-
-
-
40
-
-
1842681232
-
-
note
-
Independent experiments with glutathione diethyl ester as a trap for radical 6 demonstrated that, in G-free DNA strands, the addition of water to radical cation 3 (3→6) occurs in about 70% yield.
-
-
-
-
41
-
-
1842781560
-
-
note
-
trap. Because these ratios turned out to be independent of the conversion, the reactions follow first- or pseudo first-order kinetics.
-
-
-
-
42
-
-
1842681233
-
-
note
-
-1 by pseudo first-order kinetic experiments with different concentrations of KI.
-
-
-
-
43
-
-
0001027830
-
-
Note added in proof (February 2, 1998): Similar ET rates at 7 Å were reported recently: K. Fukui, K. Tanaka, Angew. Chem. 1998, 110, 167; Angew. Chem. Int. Ed. 1998, 37, 158.
-
(1998)
Angew. Chem.
, vol.110
, pp. 167
-
-
Fukui, K.1
Tanaka, K.2
-
44
-
-
0031906759
-
-
Note added in proof (February 2, 1998): Similar ET rates at 7 Å were reported recently: K. Fukui, K. Tanaka, Angew. Chem. 1998, 110, 167; Angew. Chem. Int. Ed. 1998, 37, 158.
-
(1998)
Angew. Chem. Int. Ed.
, vol.37
, pp. 158
-
-
|