메뉴 건너뛰기




Volumn 17, Issue 2, 1997, Pages 75-93

A Systematic Classification of Neural-Network-Based Control

Author keywords

[No Author keywords available]

Indexed keywords

CONTROL SYSTEM ANALYSIS; CONTROL SYSTEMS; LEARNING SYSTEMS; NEURAL NETWORKS;

EID: 0031122455     PISSN: 1066033X     EISSN: None     Source Type: Journal    
DOI: 10.1109/37.581297     Document Type: Article
Times cited : (118)

References (171)
  • 1
    • 0010517915 scopus 로고
    • Neural Networks: Applications in Industry, Business and Science
    • B. Widrow, D.E. Rumelhart, and M.A. Lehr, “Neural Networks: Applications in Industry, Business and Science,” Journal A, vol. 35, no. 2, pp. 17-27, 1994.
    • (1994) Journal A , vol.35 , Issue.2 , pp. 17-27
    • Widrow, B.1    Rumelhart, D.E.2    Lehr, M.A.3
  • 2
    • 0029322568 scopus 로고
    • Comparison of Linear, Nonlinear and Neural-Network-Based Adaptive Controllers for a Class of Fed-Batch Fermentation Processes
    • J.D. Boskovic and K.S. Narendra, “Comparison of Linear, Nonlinear and Neural-Network-Based Adaptive Controllers for a Class of Fed-Batch Fermentation Processes,” Automatica, vol. 31, no. 6, pp. 817-840, 1995.
    • (1995) Automatica , vol.31 , Issue.6 , pp. 817-840
    • Boskovic, J.D.1    Narendra, K.S.2
  • 3
    • 0029203133 scopus 로고
    • Experimental Comparison of a Novel, Simple, Neural Network Controller and Linear Model Based Controllers
    • (Seattle, WA)
    • P. Dutta and R.R. Rhinehart, “Experimental Comparison of a Novel, Simple, Neural Network Controller and Linear Model Based Controllers,” in Proc. American Control Conf., (Seattle, WA), pp. 1787-1789, 1995.
    • (1995) Proc. American Control Conf. , pp. 1787-1789
    • Dutta, P.1    Rhinehart, R.R.2
  • 4
    • 0027048182 scopus 로고
    • A Comparison of Three Nonlinear Controller Designs Applied to a Non-Adiabatic First-Order Exothermic Rcaction in a CSTR
    • (Chicago, IL)
    • M.J. Piovoso, K.A. Kosanovich, V. Rokhlenko, and A. Guez, “A Comparison of Three Nonlinear Controller Designs Applied to a Non-Adiabatic First-Order Exothermic Rcaction in a CSTR,” in Proc. American Control Conf., (Chicago, IL), pp. 490-494, 1992.
    • (1992) Proc. American Control Conf. , pp. 490-494
    • Piovoso, M.J.1    Kosanovich, K.A.2    Rokhlenko, V.3    Guez, A.4
  • 5
    • 0027635319 scopus 로고
    • An Analylical Comparison of a Neural Network and a Model-Based Adaptive Controller
    • R.E. Nordgreri and P.H. Meckl, “An Analylical Comparison of a Neural Network and a Model-Based Adaptive Controller,” IEEE Trans. Neural Networks, vol. 4, no. 4, pp. 685-694, 1993.
    • (1993) IEEE Trans. Neural Networks , vol.4 , Issue.4 , pp. 685-694
    • Nordgreri, R.E.1    Meckl, P.H.2
  • 6
    • 0025414689 scopus 로고
    • A Comparison Between CMAC Neural Network Control and Two Traditional Adaptive Control Systems
    • L.G. Kraft and D.P. Campagna, “A Comparison Between CMAC Neural Network Control and Two Traditional Adaptive Control Systems,” IEEE Control Systems Magazine, vol. 10, pp. 36-43, 1990.
    • (1990) IEEE Control Systems Magazine , vol.10 , pp. 36-43
    • Kraft, L.G.1    Campagna, D.P.2
  • 7
    • 0025887972 scopus 로고
    • An Overview of Neural Networks for Control
    • P.J. Werbos, “An Overview of Neural Networks for Control,” IEEE Control Systems Magazine, vol. 11, no. 1, pp. 40-41, 1991.
    • (1991) IEEE Control Systems Magazine , vol.11 , Issue.1 , pp. 40-41
    • Werbos, P.J.1
  • 8
    • 0026954775 scopus 로고
    • Neural Networks For Control Systems-A Survey
    • K.J. Hunt, D. Sbarbaro, R. Zbikowski, and P.J. Gawthrop, “Neural Networks For Control Systems-A Survey,” Automatica, vol. 28. pp. 1083-1112, 1992.
    • (1992) Automatica , vol.28 , pp. 1083-1112
    • Hunt, K.J.1    Sbarbaro, D.2    Zbikowski, R.3    Gawthrop, P.J.4
  • 9
    • 0002355083 scopus 로고
    • Connectionist Learning For Control
    • (W.T. Miller, R.S. Sutton, and P.J. Werbos, eds.), Cambridge, MA: MIT Press
    • A.G. Barto, “Connectionist Learning For Control,” in Neural Networks for Control (W.T. Miller, R.S. Sutton, and P.J. Werbos, eds.), pp. 9-61, Cambridge, MA: MIT Press, 1990.
    • (1990) Neural Networks for Control , pp. 9-61
    • Barto, A.G.1
  • 10
    • 0000848878 scopus 로고
    • Process Control Using Feedforward Neural Networks
    • J. Thibault and B.P.A. Grandjean, “Process Control Using Feedforward Neural Networks,” J. Syst, Eng., vol. 2, pp. 198-212, 1992.
    • (1992) J. Syst, Eng. , vol.2 , pp. 198-212
    • Thibault, J.1    Grandjean, B.P.A.2
  • 11
    • 3743100305 scopus 로고
    • Neural Networks For Control: Evolution, Revolution or Renaissance
    • (G.F.Page, J.B.Gomm, andD.Williams, eds.), London, UK: Chap-man & Hall
    • P.J.G. Lisboa, “Neural Networks For Control: Evolution, Revolution or Renaissance,” in Application of Neural Networks to Modelling and Control (G.F.Page, J.B.Gomm, andD.Williams, eds.), pp. 13-24, London, UK: Chap-man & Hall, 1993.
    • (1993) Application of Neural Networks to Modelling and Control , pp. 13-24
    • Lisboa, P.J.G.1
  • 12
    • 0012403030 scopus 로고
    • Neural Networks for Modelling and Control
    • (C.J.Hmis, ed.) London: Taylor & Francis
    • M. Brown and C.J. Harris, “Neural Networks for Modelling and Control,” in Advances in Intelligent Control (C.J.Hmis, ed.), pp. 17-55, London: Taylor & Francis, 1994.
    • (1994) Advances in Intelligent Control , pp. 17-55
    • Brown, M.1    Harris, C.J.2
  • 13
    • 0005264053 scopus 로고    scopus 로고
    • Neural Control Theory: An Overview
    • J.A.K. Suykens and H. Bersini, “Neural Control Theory: An Overview,” Journal A, vol. 37, no. 3, pp. 4-10, 1996.
    • (1996) Journal A , vol.37 , Issue.3 , pp. 4-10
    • Suykens, J.A.K.1    Bersini, H.2
  • 14
    • 85008011752 scopus 로고    scopus 로고
    • Adaptive Control and Neural Networks
    • E.F. Camacho and M.R. Arahal, “Adaptive Control and Neural Networks,” Journal A, vol. 37, no. 2, pp. 16-21, 1996.
    • (1996) Journal A , vol.37 , Issue.2 , pp. 16-21
    • Camacho, E.F.1    Arahal, M.R.2
  • 15
    • 0042509810 scopus 로고
    • Learning Control with Interpolating Memories-General Ideas, Design Lay-Out, Theoretical Approaches and Practical Applications
    • H. Tolle, P.C. Parks, E. Ersu, M. Hormei, and J. Militzer, “Learning Control with Interpolating Memories-General Ideas, Design Lay-Out, Theoretical Approaches and Practical Applications,” Int. J. Control, vol. 56, pp. 291-317, 1992.
    • (1992) Int. J. Control , vol.56 , pp. 291-317
    • Tolle, H.1    Parks, P.C.2    Ersu, E.3    Hormei, M.4    Militzer, J.5
  • 16
    • 3142697484 scopus 로고
    • Standardization of Neural Network Terminology
    • R.C. Eherhart, “Standardization of Neural Network Terminology,” IEEE Trans. Neural Networks, vol. 1, no. 2, pp. 244-245, 1990.
    • (1990) IEEE Trans. Neural Networks , vol.1 , Issue.2 , pp. 244-245
    • Eherhart, R.C.1
  • 17
    • 0027335197 scopus 로고
    • Self-Tuning Adaptive Control Using Fourier Series Neural Networks
    • (San Francisco, CA)
    • C. Zhu and F.W. Paul, “Self-Tuning Adaptive Control Using Fourier Series Neural Networks,” in Proc. American Control Conf., (San Francisco, CA), pp. 2524-2528, 1993.
    • (1993) Proc. American Control Conf. , pp. 2524-2528
    • Zhu, C.1    Paul, F.W.2
  • 18
    • 33645398390 scopus 로고
    • A Real-Time Adaptive Linear Quadratic Regulator Using Neural Networks
    • (Groningen, NL)
    • K.L. Moore, D.S. Naidu, and M. Siddaiah, “A Real-Time Adaptive Linear Quadratic Regulator Using Neural Networks,” in Proc. European Control Conf., (Groningen, NL), pp. 805-809, 1993.
    • (1993) Proc. European Control Conf. , pp. 805-809
    • Moore, K.L.1    Naidu, D.S.2    Siddaiah, M.3
  • 19
    • 0029342651 scopus 로고
    • Nonlinear System Identification Using Neural State Space Models, Applicable to Robust Control Design
    • J.A.K. Suykens, B.L.R. De Moor, and J. Vandewalle, “Nonlinear System Identification Using Neural State Space Models, Applicable to Robust Control Design,” Int. J. Control, vol. 62, no. 1, pp. 129-152, 1995.
    • (1995) Int. J. Control , vol.62 , Issue.1 , pp. 129-152
    • Suykens, J.A.K.1    De Moor, B.L.R.2    Vandewalle, J.3
  • 20
    • 85008029199 scopus 로고    scopus 로고
    • Neural State Transition Controller for a Polymerization Reactor
    • J. Mazak, A.A.H. Damen, and A.C.P.M. Backx, “Neural State Transition Controller for a Polymerization Reactor,” Journal A, vol. 37, no. 3, pp. 34-39, 1996.
    • (1996) Journal A , vol.37 , Issue.3 , pp. 34-39
    • Mazak, J.1    Damen, A.A.H.2    Backx, A.C.P.M.3
  • 21
    • 0028400981 scopus 로고
    • GMV Techniques for Nonlinear Control with Neural Networks
    • S. Bittanti and L. Piroddi, “GMV Techniques for Nonlinear Control with Neural Networks,” IEE Proc. Control Theory Appl., vol. 141, no. 2, pp. 57-69, 1994.
    • (1994) IEE Proc. Control Theory Appl. , vol.141 , Issue.2 , pp. 57-69
    • Bittanti, S.1    Piroddi, L.2
  • 22
    • 0030107810 scopus 로고    scopus 로고
    • Stable Adaptive Neural Control Scheme for Nonlinear Systems
    • M.M. Polycarpou, “Stable Adaptive Neural Control Scheme for Nonlinear Systems,” IEEE Trans. Automat. Contr, vol. 41, no. 3, pp. 441-451, 1996.
    • (1996) IEEE Trans. Automat. Contr , vol.41 , Issue.3 , pp. 441-451
    • Polycarpou, M.M.1
  • 23
    • 0029308580 scopus 로고
    • Adaptive Control of a Class of Nonlinear Discrete-Time Systems Using Neural Networks
    • F.-C. Chen and H.K. Khalil, “Adaptive Control of a Class of Nonlinear Discrete-Time Systems Using Neural Networks,” IEEE Trans. Automat. Conti., vol. 40, no. 5, pp. 791-801, 1995.
    • (1995) IEEE Trans. Automat. Conti , vol.40 , Issue.5 , pp. 791-801
    • Chen, F.-C.1    Khalil, H.K.2
  • 24
    • 0027699924 scopus 로고
    • Identification and Decentralized Adaptive Control Using Dynamical Neural Networks with Application to Robotic Manipulators
    • A. Karakasoglu, S.I. Sudharsanan, and M.K. Sundareshan, “Identification and Decentralized Adaptive Control Using Dynamical Neural Networks with Application to Robotic Manipulators,” IEEE Trans. Neural Networks, vol. 4, no. 6, pp. 919-930, 1993.
    • (1993) IEEE Trans. Neural Networks , vol.4 , Issue.6 , pp. 919-930
    • Karakasoglu, A.1    Sudharsanan, S.I.2    Sundareshan, M.K.3
  • 25
    • 0029408590 scopus 로고
    • Feedback Linearization Using Neural Networks
    • A. Yesildirek and E.L. Lewis, “Feedback Linearization Using Neural Networks,” Automatica, vol. 31, no. 11, pp. 1659-1664, 1995.
    • (1995) Automatica , vol.31 , Issue.11 , pp. 1659-1664
    • Yesildirek, A.1    Lewis, E.L.2
  • 26
    • 0026617166 scopus 로고
    • Comparing Two Neural Networks for Pattem Based Adaptive Process Contro1
    • D.J. Cooper, L. Megan, and R.F. Hinde, “Comparing Two Neural Networks for Pattem Based Adaptive Process Contro1,” AIChEJ, vol. 38, no. 1, pp. 41-55, 1992.
    • (1992) AIChEJ , vol.38 , Issue.1 , pp. 41-55
    • Cooper, D.J.1    Megan, L.2    Hinde, R.F.3
  • 27
    • 84987423405 scopus 로고
    • Control of Nonlinear Dynamical Systems Modeled by Recurrent Neural Networks
    • M. Nikolaou and V. Iianagandi, “Control of Nonlinear Dynamical Systems Modeled by Recurrent Neural Networks,” AIChEJ, vol. 39, no. 11, pp. 1890-1894, 1993.
    • (1993) AIChEJ , vol.39 , Issue.11 , pp. 1890-1894
    • Nikolaou, M.1    Iianagandi, V.2
  • 28
    • 0029345293 scopus 로고
    • Dynamic Recurrent Neural Network for System Identification and Control
    • A. Delgado, C. Kambhampati, and K. Warwick, “Dynamic Recurrent Neural Network for System Identification and Control,” IEE Proc. Control Theory Appl., vol. 142, no. 4, pp. 307-314, 1995.
    • (1995) IEE Proc. Control Theory Appl. , vol.142 , Issue.4 , pp. 307-314
    • Delgado, A.1    Kambhampati, C.2    Warwick, K.3
  • 29
    • 0028587469 scopus 로고
    • A Neural Network Approach of Input-Output Linearization of Affine Nonlinear Systems
    • (Baltimore, MD),
    • W.-S. Lin, H.-Y. Shne, and C.-H. Wang, “A Neural Network Approach of Input-Output Linearization of Affine Nonlinear Systems,” in Proc. American Control Conf., (Baltimore, MD), pp. 2933-2937, 1994.
    • (1994) Proc. American Control Conf. , pp. 2933-2937
    • Lin, W.-S.1    Shne, H.-Y.2    Wang, C.-H.3
  • 30
    • 0027556823 scopus 로고
    • Control of Nonlinear Dynamical Systems Using Neural Networks: Controllability and Stabilization
    • A.U. Levin and K.S. Narendra, “Control of Nonlinear Dynamical Systems Using Neural Networks: Controllability and Stabilization,” IEEE Trans. Neural Networks, vol. 4, no. 2, pp. 192-206, 1993.
    • (1993) IEEE Trans. Neural Networks , vol.4 , Issue.2 , pp. 192-206
    • Levin, A.U.1    Narendra, K.S.2
  • 31
    • 0026367993 scopus 로고
    • Neural Net Based Model Predictive Control
    • J. Saint-Donat, N. Bhat, and T.J. McAvoy, “Neural Net Based Model Predictive Control,” Int. J. Control, vol. 54, no. 6, pp. 1453-1468, 1991.
    • (1991) Int. J. Control , vol.54 , Issue.6 , pp. 1453-1468
    • Saint-Donat, J.1    Bhat, N.2    McAvoy, T.J.3
  • 32
    • 0028137961 scopus 로고
    • Adaptive Control of Nonlinear Multivariable Systems Using Neural Networks
    • K.S. Narendra and S. Mukhopadhyay, “Adaptive Control of Nonlinear Multivariable Systems Using Neural Networks,” Neural Networks, vol. 7, no. 5, pp. 737-752, 1994.
    • (1994) Neural Networks , vol.7 , Issue.5 , pp. 737-752
    • Narendra, K.S.1    Mukhopadhyay, S.2
  • 33
    • 0346663255 scopus 로고
    • Tandem Neural Networks for Welding Process Control
    • H.-H. Huang and H.-P. Wang, “Tandem Neural Networks for Welding Process Control,” J. Syst. Eng., vol. 2, pp. 295-303, 1992.
    • (1992) J. Syst. Eng. , vol.2 , pp. 295-303
    • Huang, H.-H.1    Wang, H.-P.2
  • 34
    • 0028344475 scopus 로고
    • Supervised Learning Control of a Nonlinear Polymerisation Reactor Using the CMAC Neural Network for Knowledge Storage
    • L. Xu, J.-P. Jiang, and J. Zhu, “Supervised Learning Control of a Nonlinear Polymerisation Reactor Using the CMAC Neural Network for Knowledge Storage,” IEE Puoc. Control Theovy Appl., vol. 141, pp. 33-38, 1994.
    • (1994) IEE Puoc. Control Theovy Appl. , vol.141 , pp. 33-38
    • Xu, L.1    Jiang, J.-P.2    Zhu, J.3
  • 35
    • 0029754433 scopus 로고    scopus 로고
    • Control of Nonlinear Dynmcal Systems Using Neural Networks-Part I1 Observability, Identification, and Control
    • A.U. Levin and K.S. Narendra, “Control of Nonlinear Dynmcal Systems Using Neural Networks-Part I1 Observability, Identification, and Control,” IEEE Trans Neural Networks, vol 7, no 1, pp 30-42, 1996
    • (1996) IEEE Trans Neural Networks , vol.7 , Issue.1 , pp. 30-42
    • Levin, A.U.1    Narendra, K.S.2
  • 36
    • 0028422937 scopus 로고
    • Adaptive Control of Discrete-Time Nonlinear Systems Using Recurrent Neural Networks
    • L. Jin, P.N. Nihforuk, and M.M. Gupta, “Adaptive Control of Discrete-Time Nonlinear Systems Using Recurrent Neural Networks,” IEE Proc Control Theory Appl, vol 141, no 3, pp 169-176, 1994
    • (1994) IEE Proc Control Theory Appl , vol.141 , Issue.3 , pp. 169-176
    • Jin, L.1    Nihforuk, P.N.2    Gupta, M.M.3
  • 37
    • 85008041392 scopus 로고    scopus 로고
    • Predictive Control of a Bench-Scale Chemical Reactor Based on Neural-Network Models
    • (accepted)
    • B. Schenker and M. Agarwal, “Predictive Control of a Bench-Scale Chemical Reactor Based on Neural-Network Models,” IEEE Trans Control Syst Tech (accepted)
    • IEEE Trans Control Syst Tech
    • Schenker, B.1    Agarwal, M.2
  • 38
    • 0026849116 scopus 로고
    • Study of The Control-Relevant Propemes of Rackpropagation Neural Network Models of Nonlinear Dynaimcal Systems
    • E. Hernandcz and Y. Arlun, “Study of The Control-Relevant Propemes of Rackpropagation Neural Network Models of Nonlinear Dynaimcal Systems,” Computers chem Engng, vol 16, no 4, pp 227-240, 1992.
    • (1992) Computers chem Engng , vol.16 , Issue.4 , pp. 227-240
    • Hernandcz, E.1    Arlun, Y.2
  • 39
    • 3743119225 scopus 로고
    • Control of a pH Plant Using Connectiomst Representations
    • (Sydney, Australia)
    • D. Sbarbaro, “Control of a pH Plant Using Connectiomst Representations,” in Proc 12th IFAC World Congress, vol. 10, (Sydney, Australia), pp. 377-380, 1993.
    • (1993) Proc 12th IFAC World Congress , vol.10 , pp. 377-380
    • Sbarbaro, D.1
  • 40
    • 0026954989 scopus 로고
    • Artificial Neural Networks in Process Estimation and Control
    • M.J. Willis, G.A. Montaguc, C. di Massimo, M.T. Tham, and A.J. Morris, “Artificial Neural Networks in Process Estimation and Control,” Automatica, vol 28, no 6, pp 1181-1187, 1992.
    • (1992) Automatica , vol.28 , Issue.6 , pp. 1181-1187
    • Willis, M.J.1    Montaguc, G.A.2    di Massimo, C.3    Tham, M.T.4    Morris, A.J.5
  • 41
    • 0028498609 scopus 로고
    • Dynamic Optimization of Nonlinear Processes By Combining Neural Net Model with UDMC
    • J.Q. Chen and W.A. Weigand, “Dynamic Optimization of Nonlinear Processes By Combining Neural Net Model with UDMC,” AIChEJ, vol 40, no 9, pp 1488-1497, 1994
    • (1994) AIChEJ , vol.40 , Issue.9 , pp. 1488-1497
    • Chen, J.Q.1    Weigand, W.A.2
  • 42
    • 0027884471 scopus 로고
    • A Neural Network Model for Arm Trajectory Formation Using Forward and Inverse Dynamics Models
    • Y. Wada and M. Kawato, “A Neural Network Model for Arm Trajectory Formation Using Forward and Inverse Dynamics Models,” Neural Networks, vol 6, pp 919-932, 1993.
    • (1993) Neural Networks , vol.6 , pp. 919-932
    • Wada, Y.1    Kawato, M.2
  • 43
    • 0025415732 scopus 로고
    • Forecasting and Control Using Adaptive Connectiomst Networks
    • B.E. Ydsle, “Forecasting and Control Using Adaptive Connectiomst Networks,” Computers chem Eizgng, vol 14, no 4/5, pp 583-599, 1990
    • (1990) Computers chem Eizgng , vol.14 , Issue.5-4 , pp. 583-599
    • Ydsle, B.E.1
  • 44
    • 0043273083 scopus 로고
    • Experiences with Model-Based Controllers Based on Neural Network Process Models
    • G.M. Scott and W.H. Ray, “Experiences with Model-Based Controllers Based on Neural Network Process Models,” J. Process Control, vol 3, no 3, pp 179-195, 1993.
    • (1993) J. Process Control , vol.3 , Issue.3 , pp. 179-195
    • Scott, G.M.1    Ray, W.H.2
  • 45
    • 0029404873 scopus 로고
    • Inversion of RBF Networks and Applications to Adaptive Control of Nonlinear Systems
    • L. Behera, M. Gopal, and S. Chaudhury, “Inversion of RBF Networks and Applications to Adaptive Control of Nonlinear Systems,” IEE Proc Control Theory Appl, vol 142, no 6, pp 617-624, 1995.
    • (1995) IEE Proc Control Theory Appl , vol.142 , Issue.6 , pp. 617-624
    • Behera, L.1    Gopal, M.2    Chaudhury, S.3
  • 46
    • 3743146995 scopus 로고    scopus 로고
    • Neural Network Based Control of Chemical Processes
    • A.C. van Ommeren and B. Roffel, “Neural Network Based Control of Chemical Processes,” JournalA, vol 37, no 3, pp 46-51, 1996
    • (1996) JournalA , vol.37 , Issue.3 , pp. 46-51
    • van Ommeren, A.C.1    Roffel, B.2
  • 47
    • 0026219567 scopus 로고
    • Neural Networks for Nonlinear Internal Model Control
    • J. Hunt and D. Sbarbaro, “Neural Networks for Nonlinear Internal Model Control,” IEE Proc Control Theory Appl, vol 138, no 5, pp 431-438, 1991.
    • (1991) IEE Proc Control Theory Appl , vol.138 , Issue.5 , pp. 431-438
    • Hunt, J.1    Sbarbaro, D.2
  • 48
    • 0026838119 scopus 로고
    • Iteratwe Inversion of Neural Networks and Its Application to Adaptive Control
    • D.A. Hoskms, J.N. Hwang, and J. Vagners, “Iteratwe Inversion of Neural Networks and Its Application to Adaptive Control,” IEEE Trans Neural Networks, vol 3, no 2, pp 292-301, 1992.
    • (1992) IEEE Trans Neural Networks , vol.3 , Issue.2 , pp. 292-301
    • Hoskms, D.A.1    Hwang, J.N.2    Vagners, J.3
  • 49
    • 0028386785 scopus 로고
    • Adaptive Control of Un-known Plants Using Dynamical Neural Networks
    • G. A. Rovithahs and M. A. Christodoulou, “Adaptive Control of Un-known Plants Using Dynamical Neural Networks,” IEEE Trans Systems, Man, nnd Cybernetics, vol 24, no 3, pp 400-412, 1994
    • (1994) IEEE Trans Systems, Man, nnd Cybernetics , vol.24 , Issue.3 , pp. 400-412
    • Rovithahs, G.A.1    Christodoulou, M.A.2
  • 50
    • 0028604142 scopus 로고
    • Neural Network-Based Successive One-Step-Ahead Control of Nonlinear Systems
    • (Baltimore, MD)
    • X. Ma and R. N. K. Loh, “Neural Network-Based Successive One-Step-Ahead Control of Nonlinear Systems,” in Proc Amerzcan Control Conf, (Baltimore, MD), pp 2129-2133, 1994.
    • (1994) Proc Amerzcan Control Conf , pp. 2129-2133
    • Ma, X.1    Loh, R.N.K.2
  • 51
    • 0029190953 scopus 로고
    • A Novel Neural Internal Model Control Structuie
    • (Seattle, WA),
    • G. Lightbody and G.W. Irwin, “A Novel Neural Internal Model Control Structuie,” in Proc American Control Conf, (Seattle, WA), pp 350-354, 1995
    • (1995) Proc American Control Conf , pp. 350-354
    • Lightbody, G.1    Irwin, G.W.2
  • 52
    • 0028495948 scopus 로고
    • Neural-Net Controller for Nonlinear Plants Design Approach Through Linearisation
    • M.S. Ahmed and I.A. Tasadduq, “Neural-Net Controller for Nonlinear Plants Design Approach Through Linearisation,” IEE Proc Control Theory Appl, vol 141, no 5, pp 315-322, 1994
    • (1994) IEE Proc Control Theory Appl , vol.141 , Issue.5 , pp. 315-322
    • Ahmed, M.S.1    Tasadduq, I.A.2
  • 53
    • 0011715014 scopus 로고    scopus 로고
    • Non-Linear Pole-Placement Control with a Neural Network
    • O. Sorensen, “Non-Linear Pole-Placement Control with a Neural Network,” European J. Control, vol 2, no 1, pp 36-43, 1996
    • (1996) European J. Control , vol.2 , Issue.1 , pp. 36-43
    • Sorensen, O.1
  • 54
    • 0029393537 scopus 로고
    • Model Predictwe Control Using Neural Networks
    • A. Draeger, S. Engell, and H. Ranke, “Model Predictwe Control Using Neural Networks,” IEEE Control Systems Magazine, vol 15, no 5, pp 61-66, 1995
    • (1995) IEEE Control Systems Magazine , vol.15 , Issue.5 , pp. 61-66
    • Draeger, A.1    Engell, S.2    Ranke, H.3
  • 55
    • 0028727801 scopus 로고
    • Auto-Tuning PID Control Using Neural Predictor to Compensate Large Time-Delay
    • (Glasgow, UK)
    • Y. Tan and R. De Keyser, “Auto-Tuning PID Control Using Neural Predictor to Compensate Large Time-Delay,” in Proc IEEE Conf Control Applications, (Glasgow, UK), pp 1429-1434, 1994
    • (1994) Proc IEEE Conf Control Applications , pp. 1429-1434
    • Tan, Y.1    De Keyser, R.2
  • 56
    • 0028588397 scopus 로고
    • Mechanical System Trackmg Using Neural Networks
    • (Baltimore, MD)
    • J.D. Leon, E.N. Sanchez, and A. Chatagner, “Mechanical System Trackmg Using Neural Networks,” in Proc American Control Cons, (Baltimore, MD), pp 2555-2559,1994
    • (1994) Proc American Control Cons , pp. 2555-2559
    • Leon, J.1    Sanchez, E.2    Chatagner, A.3
  • 57
    • 3743062431 scopus 로고
    • Direct Adaptive Control of Nonlinear Systems Using Neural Networks and Stochastic Approximation
    • (Tucson, AZ)
    • J.C. Spall and J.A. Cristion, “Direct Adaptive Control of Nonlinear Systems Using Neural Networks and Stochastic Approximation,” in Proc 31st IEEE Conf Decision Control, (Tucson, AZ), pp 878-883, 1992
    • (1992) Proc 31st IEEE Conf Decision Control , pp. 878-883
    • Spall, J.C.1    Cristion, J.A.2
  • 58
    • 0029529474 scopus 로고
    • CMAC Network-Based Robust Controller For Systems with Fnction
    • (New Orleans, LA)
    • S.-W. Lee and J.-H. Kim, “CMAC Network-Based Robust Controller For Systems with Fnction,” in Proc 34th IEEE Conf Decision Control, (New Orleans, LA), pp 2938-2939, 1995
    • (1995) Proc 34th IEEE Conf Decision Control , pp. 2938-2939
    • Lee, S.-W.1    Kim, J.-H.2
  • 59
    • 3743149291 scopus 로고    scopus 로고
    • Neural Adaptive Feedback Lineanzation Control
    • A.J.N. Van Breemen and L.P.J. Veelenturf, “Neural Adaptive Feedback Lineanzation Control,” JonrnalA, vol 37, no 3, pp 65-71, 1996
    • (1996) JonrnalA , vol.37 , Issue.3 , pp. 65-71
    • Van Breemen, A.J.N.1    Veelenturf, L.P.J.2
  • 60
    • 0029759821 scopus 로고    scopus 로고
    • Multdayer Discrete-Time Neural-Net Controller with Guaranteed Performance
    • S. Jagannathan and F.L. Lewis, “Multdayer Discrete-Time Neural-Net Controller with Guaranteed Performance,” IEEE Trans Neural Netlvorks, vol 7, no 1, pp 107-130, 1996.
    • (1996) IEEE Trans Neural Netlvorks , vol.7 , Issue.1 , pp. 107-130
    • Jagannathan, S.1    Lewis, F.L.2
  • 61
    • 0003049327 scopus 로고
    • Neural Net Computing and the Intelligent Control of Systems
    • J.Y.-H. Pao, S.M. Phillips, and D.J. Sobajic, “Neural Net Computing and the Intelligent Control of Systems,” Int. J. Control, vol 56, no 2, pp 263-289, 1992.
    • (1992) Int. J. Control , vol.56 , Issue.2 , pp. 263-289
    • Pao, J.Y.-H.1    Phillips, S.M.2    Sobajic, D.J.3
  • 62
    • 84987391054 scopus 로고
    • Optimal Multiloop Feedback Design Using Simulated Annealing and Neural Network
    • J.J.L. Lin, D.S.H. Wong, and S.W. Yu, “Optimal Multiloop Feedback Design Using Simulated Annealing and Neural Network,” AIChE J, vol 41, no 2, pp 430-434, 1995
    • (1995) AIChE J , vol.41 , Issue.2 , pp. 430-434
    • Lin, J.J.L.1    Wong, D.S.H.2    Yu, S.W.3
  • 63
    • 0028374275 scopus 로고
    • Robot Juggling Implementation of Memory-Based Learning
    • S. Schaal and C.G. Atkeson, “Robot Juggling Implementation of Memory-Based Learning,” IEEE Control Systems Magazine, vol 14, pp 57-71, 1994
    • (1994) IEEE Control Systems Magazine , vol.14 , pp. 57-71
    • Schaal, S.1    Atkeson, C.G.2
  • 64
    • 0029592634 scopus 로고
    • Adaptive Critic Designs A Case Study For Neurocontrol
    • D.V. Prokhorov, R.A. Santiago, and D.C. Wunsch, “Adaptive Critic Designs A Case Study For Neurocontrol,” Neural Networks, vol 8, no 9, pp 1367.1372, 1995
    • (1995) Neural Networks , vol.8 , Issue.9 , pp. 1367-1372
    • Prokhorov, D.V.1    Santiago, R.A.2    Wunsch, D.C.3
  • 66
    • 0029411949 scopus 로고
    • Direct Associative Reinforcement Learning Methods foi Dynamic Systems Control
    • V. Gullapalh, “Direct Associative Reinforcement Learning Methods foi Dynamic Systems Control,” Neurocomputiizg, vol 9, pp 271-292, 1995.
    • (1995) Neurocomputiizg , vol.9 , pp. 271-292
    • Gullapalh, V.1
  • 68
    • 3743123761 scopus 로고
    • Neural Networks Can Be Used for Open-Loop, Dynamc Control
    • R.W. Anderson and V. Vemuri, “Neural Networks Can Be Used for Open-Loop, Dynamc Control,” Int J. Neural Networks, vol 3, no 3, pp 71-83, 1992
    • (1992) Int J. Neural Networks , vol.3 , Issue.3 , pp. 71-83
    • Anderson, R.W.1    Vemuri, V.2
  • 69
    • 85008062356 scopus 로고
    • The Use of Artificial Intelligence in Self-Tuning PID Controllers
    • M. Roele and K. Warwick, “The Use of Artificial Intelligence in Self-Tuning PID Controllers,” J Syst Eng, vol 5, pp 223-238, 1995
    • (1995) J Syst Eng , vol.5 , pp. 223-238
    • Roele, M.1    Warwick, K.2
  • 70
    • 0026671502 scopus 로고
    • A Nonlinear Receding Horizon Controller Based on Connectionist Models
    • (Bnghton, England)
    • D. Sbarbaro and K. J. Hunt, “A Nonlinear Receding Horizon Controller Based on Connectionist Models,” in Proc 30th IEEE Conf Deczszon Control, (Bnghton, England), pp 172-173, 1991
    • (1991) Proc 30th IEEE Conf Deczszon Control , pp. 172-173
    • Sbarbaro, D.1    Hunt, K.J.2
  • 71
    • 0027803571 scopus 로고
    • A Neural NetworkBased RLS Parameter Estimation Algonthm and Its Application in Predictive Control
    • (Chicago, IL)
    • J.G. Geng and G.M. Geary, “A Neural NetworkBased RLS Parameter Estimation Algonthm and Its Application in Predictive Control,” in Proc IEEE Int Symp Intelligent Control, (Chicago, IL), pp 127-131, 1993
    • (1993) Proc IEEE Int Symp Intelligent Control , pp. 127-131
    • Geng, J.G.1    Geary, G.M.2
  • 72
    • 0026368923 scopus 로고
    • A System Identification Model for Adaptive Nonlinear Control
    • (Boston, MA)
    • D.J. Linse and R.F. Stengel, “A System Identification Model for Adaptive Nonlinear Control,” in Proc Amerzcan Control Conf, (Boston, MA), pp 1752-1757, 1991
    • (1991) Proc Amerzcan Control Conf , pp. 1752-1757
    • Linse, D.J.1    Stengel, R.F.2
  • 73
    • 3743145860 scopus 로고
    • A Label-Dnven CMAC Intelligent Control Strategy
    • (G.F.Page, J.B.Gomm, and D.Williams, eds.),London, UK:Chapman & Hall
    • A. J. Lawrence and C. J. Harris, “A Label-Dnven CMAC Intelligent Control Strategy,” in Applrcatzon of Neural Networks to Modelling and Control (G.F.Page, J.B.Gomm, and D.Williams, eds.), pp. 89-103, London, UK:Chapman & Hall, 1993.
    • (1993) Applrcatzon of Neural Networks to Modelling and Control , pp. 89-103
    • Lawrence, A.J.1    Harris, C.J.2
  • 74
    • 0027810460 scopus 로고
    • Adaptive Variable Structure Control of Flexible Manipulators by Neural Network Payload Identification
    • (San Antonio, TX)
    • C. Askew and M.K. Sundareshan, “Adaptive Variable Structure Control of Flexible Manipulators by Neural Network Payload Identification,” in Proc. 32nd IEEE Conf. Dec. Contr, (San Antonio, TX), pp. 3249-3250, 1993.
    • (1993) Proc. 32nd IEEE Conf. Dec. Contr , pp. 3249-3250
    • Askew, C.1    Sundareshan, M.K.2
  • 75
    • 0029291914 scopus 로고
    • A Very Simple Structure for Neural Network Control of Distillation
    • S. Ramchandran and R.R. Rhinehart, “A Very Simple Structure for Neural Network Control of Distillation,” J. Process Control, vol. 5, no. 2, pp. 115-128, 1995
    • (1995) J. Process Control , vol.5 , Issue.2 , pp. 115-128
    • Ramchandran, S.1    Rhinehart, R.R.2
  • 76
    • 58149319587 scopus 로고
    • Neural Network Modelling and Control Strategies for a pH Process
    • A.P. Loh, K.O. Looi, and K.F. Fong, “Neural Network Modelling and Control Strategies for a pH Process,” J. Process Control, vol. 5, no. 6, pp. 355-362, 1995.
    • (1995) J. Process Control , vol.5 , Issue.6 , pp. 355-362
    • Loh, A.P.1    Looi, K.O.2    Fong, K.F.3
  • 77
    • 0027719432 scopus 로고
    • Feedback Stabilization: Control Lyapu-nov Functions Modelled by Neural Networks
    • (San Antonio, lX),
    • Y. Long and M.M. Bayoumi, “Feedback Stabilization: Control Lyapu-nov Functions Modelled by Neural Networks,” in Proc. 32nd IEEE Conf. Decision Control, (San Antonio, lX), pp. 2812.2814, 1993.
    • (1993) Proc. 32nd IEEE Conf. Decision Control , pp. 2812-2814
    • Long, Y.1    Bayoumi, M.M.2
  • 78
    • 0026393829 scopus 로고
    • A Gaussian Neural Network Implementation for Control Scheduling
    • (Arlington, VA)
    • M.A. Sartori and P.J. Antsaklis, “A Gaussian Neural Network Implementation for Control Scheduling,” in Proc. IEEE Int. Symp. Intelligent Control, (Arlington, VA), pp. 400-404, 1991.
    • (1991) Proc. IEEE Int. Symp. Intelligent Control , pp. 400-404
    • Sartori, M.A.1    Antsaklis, P.J.2
  • 79
    • 0027594098 scopus 로고
    • On The Nonlinear Optimal Regulator Problem
    • C.J. Goh, “On The Nonlinear Optimal Regulator Problem,” Automatica, vol. 29, no. 3, pp. 751-756, 1993.
    • (1993) Automatica , vol.29 , Issue.3 , pp. 751-756
    • Goh, C.J.1
  • 80
    • 0028574637 scopus 로고
    • Neural Networks for Exact Solution of Conof Constrained Optimal Control Problems
    • (Baltimore, MD)
    • R.-L. Yang and C.-P. Wu, “Neural Networks for Exact Solution of Conof Constrained Optimal Control Problems,” in Proc. American Control Conf, (Baltimore, MD), pp. 1379-1383, 1994.
    • (1994) Proc. American Control Conf , pp. 1379-1383
    • Yang, R.-L.1    Wu, C.-P.2
  • 81
    • 0030109093 scopus 로고    scopus 로고
    • A Multilayer Recurrent Neural Network For On-Line Synthesis of Minimum-Norm Linear Feedback Control Systems Via Pole Assignment
    • J. Wang and G. Wu, “A Multilayer Recurrent Neural Network For On-Line Synthesis of Minimum-Norm Linear Feedback Control Systems Via Pole Assignment,” Automatica, vol. 32, no. 3, pp. 435-442, 1996.
    • (1996) Automatica , vol.32 , Issue.3 , pp. 435-442
    • Wang, J.1    Wu, G.2
  • 82
    • 0027007477 scopus 로고
    • Nonlinear Internal Model Control Strategy for Neural Network Models
    • E.P. Nahas, M.A. Henson, and D.E. Seborg, “Nonlinear Internal Model Control Strategy for Neural Network Models,” Computers chem. Engng, vol. 16, no. 12, pp. 1039-1057, 1992.
    • (1992) Computers chem. Engng , vol.16 , Issue.12 , pp. 1039-1057
    • Nahas, E.P.1    Henson, M.A.2    Seborg, D.E.3
  • 83
    • 0007312685 scopus 로고
    • Control Surface Failure Detection and Accommodation Using Neuro-Controllers
    • K. KrishnaKumar and R. Lattus, “Control Surface Failure Detection and Accommodation Using Neuro-Controllers,” Neural Comput & Applic, vol. 115-128, 1995. 2, pp. 120-128, 1994.
    • (1994) Neural Comput & Applic , vol.115-128 , Issue.2 , pp. 120-128
    • KrishnaKumar, K.1    Lattus, R.2
  • 84
    • 3743105850 scopus 로고
    • A Neural Network Stralegy for Disturbance Pattern Classification and Adaptive Multivariable Control
    • L. Megan and D.J. Cooper, “A Neural Network Stralegy for Disturbance Pattern Classification and Adaptive Multivariable Control,” Compnters chem. Engng, vol. 19, no. 2, pp. 171-186, 1995.
    • (1995) Compnters chem. Engng , vol.19 , Issue.2 , pp. 171-186
    • Megan, L.1    Cooper, D.J.2
  • 86
    • 0028445469 scopus 로고
    • Intelligent Fault Diagnosis and Control Reconfiguration
    • H.E. Raucb, “Intelligent Fault Diagnosis and Control Reconfiguration,” IEEE Control Systems Magazine, vol. 14, pp. 6-12, 1994.
    • (1994) IEEE Control Systems Magazine , vol.14 , pp. 6-12
    • Raucb, H.E.1
  • 87
    • 0029752346 scopus 로고    scopus 로고
    • Intelligent Controller Design for the Ship Steering Problem
    • Y.M. Enab, “Intelligent Controller Design for the Ship Steering Problem,” IEE Proc. Control Theory Appl., vol. 143, no. 1, pp. 17-24, 1996.
    • (1996) IEE Proc. Control Theory Appl. , vol.143 , Issue.1 , pp. 17-24
    • Enab, Y.M.1
  • 88
    • 0007312685 scopus 로고
    • Control Surface Failure Detection and Accommodation Using Neuro-Controllers
    • K. KrishnaKumar and R. Lattus, “Control Surface Failure Detection and Accommodation Using Neuro-Controllers,” Neural Comput & Applic, vol. 115-128, 1995., pp. 120-128, 1994.
    • (1994) Neural Comput & Applic , vol.115-128 , pp. 120-128
    • KrishnaKumar, K.1    Lattus, R.2
  • 89
    • 0030257634 scopus 로고    scopus 로고
    • Model-Specific Autotuning of Classical Regulators: a Neural Approach to Structural Identification
    • A. Leva and I. Pirnddi, “Model-Specific Autotuning of Classical Regulators: a Neural Approach to Structural Identification,” Control Eng. Practice, vol. 4, no. 10, pp. 1381-1391, 1996.
    • (1996) Control Eng. Practice , vol.4 , Issue.10 , pp. 1381-1391
    • Leva, A.1    Pirnddi, I.2
  • 90
    • 0025568674 scopus 로고
    • Ship Directional Control by Synthetic Neural Network
    • (San Diego, CA)
    • G.A. Pugh, “Ship Directional Control by Synthetic Neural Network,” in Proc. American Control Conf., (San Diego, CA), pp. 3028-3029, 1990.
    • (1990) Proc. American Control Conf. , pp. 3028-3029
    • Pugh, G.A.1
  • 92
    • 38249018190 scopus 로고
    • Nonlinear Process Control with Neural Nets
    • Y.-H. Pao and D.J. Sobajic, “Nonlinear Process Control with Neural Nets,” Neurocomputing, vol. 2, pp. 51-59, 1990.
    • (1990) Neurocomputing , vol.2 , pp. 51-59
    • Pao, Y.-H.1    Sobajic, D.J.2
  • 93
    • 85008015780 scopus 로고
    • Nonlinear System Control Using Neural Networks
    • A. Prochazka and M. Storek, “Nonlinear System Control Using Neural Networks,” Neural Network World, vol. 3, pp. 261-266, 1993.
    • (1993) Neural Network World , vol.3 , pp. 261-266
    • Prochazka, A.1    Storek, M.2
  • 94
    • 0002623406 scopus 로고
    • A Neural Network Baseline Problem for Control of Aircraft Flare and Touchdown
    • (W.T.Miller, R.S.Sutton, and P.J.Werbos, eds.), Cambridge, MA: MIT Press.
    • C. Jorgenson and C. Schley, “A Neural Network Baseline Problem for Control of Aircraft Flare and Touchdown,” in Neural Networks for Control (W.T.Miller, R.S.Sutton, and P.J.Werbos, eds.), pp. 403-425, Cambridge, MA: MIT Press, 1990.
    • (1990) Neural Networks for Control , pp. 403-425
    • Jorgenson, C.1    Schley, C.2
  • 95
    • 0027634760 scopus 로고
    • A Simplified Neural Network Solution Through Problem Decomposition: The Case of the Truck Backer-Upper
    • R.E. Jenkins and B.P. Yuhas, “A Simplified Neural Network Solution Through Problem Decomposition: The Case of the Truck Backer-Upper,” IEEE Trans. Neural Networks, vol. 4, no. 4, pp. 718-719, 1993.
    • (1993) IEEE Trans. Neural Networks , vol.4 , Issue.4 , pp. 718-719
    • Jenkins, R.E.1    Yuhas, B.P.2
  • 96
    • 0027561763 scopus 로고
    • A Rule-Based Neural Controller for Inverted Pendulum System
    • J. Hao and J. Vandewalle, “A Rule-Based Neural Controller for Inverted Pendulum System,” Int. J. Neural Systems, vol. 4, no. 1, pp. 55-64, 1993.
    • (1993) Int. J. Neural Systems , vol.4 , Issue.1 , pp. 55-64
    • Hao, J.1    Vandewalle, J.2
  • 97
    • 3743131654 scopus 로고
    • A Policy-and Experience-Driven Neural Network and Its Application to Nonlinear Process Control
    • (Groningen, NL)
    • M. Ishida and J. Zhan, “A Policy-and Experience-Driven Neural Network and Its Application to Nonlinear Process Control,” in Proc. European Control Conf., (Groningen, NL), pp. 471-474, 1993.
    • (1993) Proc. European Control Conf. , pp. 471-474
    • Ishida, M.1    Zhan, J.2
  • 98
    • 0028413077 scopus 로고
    • FCMAC: A Fuzzified Cerebellar Model Articulation Controller With Self-organizing Capacity
    • J. Nie and D.A. Linkens, “FCMAC: A Fuzzified Cerebellar Model Articulation Controller With Self-organizing Capacity,” Automatica, vol. 30, no. 4, pp. 655-664, 1994.
    • (1994) Automatica , vol.30 , Issue.4 , pp. 655-664
    • Nie, J.1    Linkens, D.A.2
  • 99
    • 0027277832 scopus 로고
    • Feedback Control of Minimum-Time Optimal Control Problems Using Neural Networks
    • C.J. Goh, N.J. Edwards, and A.Y. Zomaya, “Feedback Control of Minimum-Time Optimal Control Problems Using Neural Networks,” Optim. Control Appl. Methods, vol. 14, pp. 1-16, 1993.
    • (1993) Optim. Control Appl. Methods , vol.14 , pp. 1-16
    • Goh, C.J.1    Edwards, N.J.2    Zomaya, A.Y.3
  • 100
    • 3743065746 scopus 로고
    • A Nonlinear Predictive Control Strategy Based on Radial Basis Function Networks
    • (College Park, MD)
    • M. Pottmann and D.E. Seborg, “A Nonlinear Predictive Control Strategy Based on Radial Basis Function Networks,” in Proc. IFAC Symp. DY-CORD+’92, (College Park, MD), pp. 309-314, 1992.
    • (1992) Proc. IFAC Symp. DY-CORD+’92 , pp. 309-314
    • Pottmann, M.1    Seborg, D.E.2
  • 101
    • 0030213592 scopus 로고    scopus 로고
    • Linear and Neural Network Feedback for Flight Control Decoupling
    • J.E. Steck, K. Rokhsaz, and S.-P. Shue, “Linear and Neural Network Feedback for Flight Control Decoupling,” IEEE Control Systems Magazine, vol. 16, no. 4, pp. 22-30, 1996.
    • (1996) IEEE Control Systems Magazine , vol.16 , Issue.4 , pp. 22-30
    • Steck, J.E.1    Rokhsaz, K.2    Shue, S.-P.3
  • 103
    • 0026385824 scopus 로고
    • Synthesis of Feedback Linearization and Variable Structure Control with Neural Net Compensation
    • (Arlington, VA)
    • J.X. Xu, J. Donne, and U. Ozguner, “Synthesis of Feedback Linearization and Variable Structure Control with Neural Net Compensation,” in Proc. IEEE Int. Symp. Intelligent Control, (Arlington, VA), pp. 184-189, 1991.
    • (1991) Proc. IEEE Int. Symp. Intelligent Control , pp. 184-189
    • Xu, J.X.1    Donne, J.2    Ozguner, U.3
  • 104
    • 0026374930 scopus 로고
    • Unsupervised Adaptive Neural-Network Control of Complex Mechanical Systems
    • (Boston, MA)
    • G.-I. Wang and D.K. Miu, “Unsupervised Adaptive Neural-Network Control of Complex Mechanical Systems,” in Proc. American Control Conf., (Boston, MA), pp. 28-29, 1991.
    • (1991) Proc. American Control Conf. , pp. 28-29
    • Wang, G.-I.1    Miu, D.K.2
  • 106
    • 0030108707 scopus 로고    scopus 로고
    • A Neural-Network Approach to the Control of Surface Ships
    • R. Burns and R. Richter, “A Neural-Network Approach to the Control of Surface Ships,” Control Eng. Practice, vol. 4, no. 3, pp. 411-416, 1996.
    • (1996) Control Eng. Practice , vol.4 , Issue.3 , pp. 411-416
    • Burns, R.1    Richter, R.2
  • 107
    • 0025536992 scopus 로고
    • A Neural Network Architecture for Model Reference Adaptive Control
    • (Honolulu, HI)
    • K. Khorasani and R.V. Patel, “A Neural Network Architecture for Model Reference Adaptive Control,” in Proc. 29th IEEE Conf. Decision Control, (Honolulu, HI), pp. 2768-2769, 1990.
    • (1990) Proc. 29th IEEE Conf. Decision Control , pp. 2768-2769
    • Khorasani, K.1    Patel, R.V.2
  • 108
    • 0000286340 scopus 로고
    • Neural Network Regulators for Synchronous Machines
    • (Sydney, Australia)
    • D.C. Kennedy and V.H. Quintana, “Neural Network Regulators for Synchronous Machines,” in Proc. 12th IFAC World Congress, vol. 5, (Sydney, Australia), pp. 131-136, 1993.
    • (1993) Proc. 12th IFAC World Congress , vol.5 , pp. 131-136
    • Kennedy, D.C.1    Quintana, V.H.2
  • 109
    • 0025121615 scopus 로고
    • Adaptive Networks for Fault Diagnosis and Process Control
    • L.H. Ungar, B.A. Powell, and S.N. Kamens, “Adaptive Networks for Fault Diagnosis and Process Control,” Computers chem. Engng, vol. 14, no. 4/5, pp. 561-572, 1990.
    • (1990) Computers chem. Engng , vol.14 , Issue.4-5 , pp. 561-572
    • Ungar, L.H.1    Powell, B.A.2    Kamens, S.N.3
  • 110
    • 0026392429 scopus 로고
    • Adaptive Control Using Neural Networks
    • (Boston,MA)
    • J.E. Cramer and B.F. Womack, “Adaptive Control Using Neural Networks,” in Proc. American Control Conf., (Boston,MA), pp. 681-686, 1991
    • (1991) Proc. American Control Conf. , pp. 681-686
    • Cramer, J.E.1    Womack, B.F.2
  • 112
  • 114
    • 3743084110 scopus 로고
    • Compensation of Unstructured Uncertainty in Manipulators Using Neural Networks
    • (Tucson, AZ)
    • A. Kuan and B. Bavarian, “Compensation of Unstructured Uncertainty in Manipulators Using Neural Networks,” in Proc. 3Ist IEEE Conf. Dec. Contr:, (Tucson, AZ), pp. 2706-2709, 1992.
    • (1992) Proc. 3Ist IEEE Conf. Dec. Contr , pp. 2706-2709
    • Kuan, A.1    Bavarian, B.2
  • 115
    • 0027556807 scopus 로고
    • Application of Feedforward Neural Networks to Dynamical System Identification and Control
    • J.G. Kuschewski, S. Hui, and S.H. Zak, “Application of Feedforward Neural Networks to Dynamical System Identification and Control,” IEEE Trans. Control Syst. Tech., vol. 1, no. 1, pp. 37-49, 1993.
    • (1993) IEEE Trans. Control Syst. Tech. , vol.1 , Issue.1 , pp. 37-49
    • Kuschewski, J.G.1    Hui, S.2    Zak, S.H.3
  • 116
    • 0028545482 scopus 로고
    • Single Net Indirect Learning Architecture
    • H.C. Andersen, F.C. Teng, and A.C. Tsoi, “Single Net Indirect Learning Architecture,” IEEE Trans. Neural Networks, vol. 5, no. 6, pp. 1003-1005, 1994.
    • (1994) IEEE Trans. Neural Networks , vol.5 , Issue.6 , pp. 1003-1005
    • Andersen, H.C.1    Teng, F.C.2    Tsoi, A.C.3
  • 117
    • 0026369241 scopus 로고
    • On The Iterative Inversion of RBF Networks: A Statistical Interpretation
    • (Bournemouth, UK)
    • D. Lowe, “On The Iterative Inversion of RBF Networks: A Statistical Interpretation,” in Proc. IEE 2nd Int. Conf. Artificial Neural Networks, (Bournemouth, UK), pp. 29-33, 1991.
    • (1991) Proc. IEE 2nd Int. Conf. Artificial Neural Networks , pp. 29-33
    • Lowe, D.1
  • 118
    • 0026397481 scopus 로고
    • Neural Networks for Self-Learning Control Systems
    • D.H. Nguyen and B. Widrow, “Neural Networks for Self-Learning Control Systems,” Int. J. Control, vol. 54, no. 6, pp. 1439-1451, 1991.
    • (1991) Int. J. Control , vol.54 , Issue.6 , pp. 1439-1451
    • Nguyen, D.H.1    Widrow, B.2
  • 120
    • 0030242079 scopus 로고    scopus 로고
    • An Optimal Tracking Neuro-Controller for Nonlinear Dynamic Systems
    • Y.-M. Park, M.E. Choi, and K.Y. Lee, “An Optimal Tracking Neuro-Controller for Nonlinear Dynamic Systems,” IEEE Trans. Neural Networks, vol. 7, no. 5,pp. 1099-1110, 1996.
    • (1996) IEEE Trans. Neural Networks , vol.7 , Issue.5 , pp. 1099-1110
    • Park, Y.-M.1    Choi, M.E.2    Lee, K.Y.3
  • 121
  • 122
    • 0026686002 scopus 로고
    • A Neural Network Regulator for Turbogenerators
    • Q.H. Wu, B.W. Hogg, and G.W. Irwin, “A Neural Network Regulator for Turbogenerators,” IEEE Trans. Neural Networks, vol. 3, no. 1, pp. 95-100, 1992.
    • (1992) IEEE Trans. Neural Networks , vol.3 , Issue.1 , pp. 95-100
    • Wu, Q.H.1    Hogg, B.W.2    Irwin, G.W.3
  • 123
    • 0025416901 scopus 로고
    • Neuromorphic Pitch Attitude Regulation of an Underwater Telerobot
    • R.M. Sanner and D.L. Akin, “Neuromorphic Pitch Attitude Regulation of an Underwater Telerobot,” IEEE Control Systems Magazine, vol. 10, pp. 62-67, 1990.
    • (1990) IEEE Control Systems Magazine , vol.10 , pp. 62-67
    • Sanner, R.M.1    Akin, D.L.2
  • 124
    • 0026189438 scopus 로고
    • A Nonlinear Regulator Design in the Presence of System Uncertainties Using Multilayered Neural Networks
    • Y. Iiguni, H. Sakai, and H. Tokumaru, “A Nonlinear Regulator Design in the Presence of System Uncertainties Using Multilayered Neural Networks,” IEEE Trans. Neural Networks, vol. 2, no. 4, pp. 410-417, 1991.
    • (1991) IEEE Trans. Neural Networks , vol.2 , Issue.4 , pp. 410-417
    • Iiguni, Y.1    Sakai, H.2    Tokumaru, H.3
  • 125
    • 0028425062 scopus 로고
    • Neural Networks for Feedback Feedforward Nonlinear Control Systems
    • T. Parisini and R. Zoppoli, “Neural Networks for Feedback Feedforward Nonlinear Control Systems,” IEEE Trans. Neural Networks, vol. 5, no. 3, pp. 436-449, 1994.
    • (1994) IEEE Trans. Neural Networks , vol.5 , Issue.3 , pp. 436-449
    • Parisini, T.1    Zoppoli, R.2
  • 126
    • 0030109088 scopus 로고    scopus 로고
    • Optimal Control of Terminal Processes Using Neural Networks
    • E.S. Plumer, “Optimal Control of Terminal Processes Using Neural Networks,”IEEE Trans. Neural Networks, vol. 7, no. 2, pp. 408-418, 1996.
    • (1996) IEEE Trans. Neural Networks , vol.7 , Issue.2 , pp. 408-418
    • Plumer, E.S.1
  • 127
    • 0029540834 scopus 로고
    • Control of Nonlinear Dynamic Systems Using a Stability Based Neural Network Approach
    • (New Orleans, LA)
    • S. Yn and A.M. Annaswamy, “Control of Nonlinear Dynamic Systems Using a Stability Based Neural Network Approach,” in Proc. 34th IEEE Conf. Decision Control, (New Orleans, LA), pp. 1290-1295, 1995.
    • (1995) Proc. 34th IEEE Conf. Decision Control , pp. 1290-1295
    • Yn, S.1    Annaswamy, A.M.2
  • 128
    • 0027800176 scopus 로고
    • A New Neural Network Control Architecture fos a Class of Nonlinear Dynamic Systems
    • (San Francisco, CA)
    • S.-L. Chang and S.S. Nair, “A New Neural Network Control Architecture fos a Class of Nonlinear Dynamic Systems,” in Proc. American Control Conf., (San Francisco, CA), pp. 79-83, 1993.
    • (1993) Proc. American Control Conf. , pp. 79-83
    • Chang, S.-L.1    Nair, S.S.2
  • 129
    • 0027091897 scopus 로고
    • Investigation of the Application of Neural Networks to Fault Tolerant Control of an Active Suspension System
    • (Chicago, IL)
    • R.J. Hampo and K.A. Marko, “Investigation of the Application of Neural Networks to Fault Tolerant Control of an Active Suspension System,” in Proc. American Control Conf., (Chicago, IL), pp. 11-13, 1992.
    • (1992) Proc. American Control Conf. , pp. 11-13
    • Hampo, R.J.1    Marko, K.A.2
  • 130
    • 0028399792 scopus 로고
    • Memory Neuron Networks for Identification and Control of Dynamcal Systems
    • P.S Sastry, G Santharam, and K.P. Unniknshnan, “Memory Neuron Networks for Identification and Control of Dynamcal Systems,” IEEE Trans Neural Networks, vol 5, no 2, pp 306-319, 1994
    • (1994) IEEE Trans Neural Networks , vol.5 , Issue.2 , pp. 306-319
    • Sastry, P.1    Santharam, G.2    Unniknshnan, K.P.3
  • 131
    • 0029184946 scopus 로고
    • Direct Neural Model Reference Adaptive Control
    • G. Lightbody and G.W. Irwin, “Direct Neural Model Reference Adaptive Control,” IEE Proc Control Theory Appl, vol 142, no 1, pp 31-43, 1995
    • (1995) IEE Proc Control Theory Appl , vol.142 , Issue.1 , pp. 31-43
    • Lightbody, G.1    Irwin, G.W.2
  • 132
    • 0028494556 scopus 로고
    • Block Partial Denvatwe and Its Application to Neural-Net-Based Direct-Model-Reference Adaptive Control
    • M.S. Ahmed, “Block Partial Denvatwe and Its Application to Neural-Net-Based Direct-Model-Reference Adaptive Control,” IEE Proc Control Theory Appl, vol 141, no 5, pp 305-314, 1994
    • (1994) IEE Proc Control Theory Appl , vol.141 , Issue.5 , pp. 305-314
    • Ahmed, M.S.1
  • 133
    • 0029207879 scopus 로고
    • Diagonal Recurrent Neural Networks for Dynamic Systems Control
    • C.-C. Ku and K.Y. Lee, “Diagonal Recurrent Neural Networks for Dynamic Systems Control,” IEEE Trans Neural Networks, vol 6, no 1, pp 144-156, 1995
    • (1995) IEEE Trans Neural Networks , vol.6 , Issue.1 , pp. 144-156
    • Ku, C.-C.1    Lee, K.Y.2
  • 134
    • 0030081211 scopus 로고    scopus 로고
    • Neural Network Architecture for Process Control Based on the RTRL Algorithm
    • T. Cholan, T. Catfohs, and K. Meert, “Neural Network Architecture for Process Control Based on the RTRL Algorithm,” AIChE J, vol 42, no 2, pp 493-502, 1996
    • (1996) AIChE J , vol.42 , Issue.2 , pp. 493-502
    • Cholan, T.1    Catfohs, T.2    Meert, K.3
  • 135
    • 0005732357 scopus 로고
    • Novel Configuration of Nonlinear Adaptwe Control Incorporating Neural Network
    • (Sydney, Australia)
    • T. Ishikawa, J. Tsuj, H. Ohmori, and A. Sano, “Novel Configuration of Nonlinear Adaptwe Control Incorporating Neural Network,” in Proc 12th IFAC World Congress, vol 9, (Sydney, Australia), pp 483-488, 1993.
    • (1993) Proc 12th IFAC World Congress , vol.9 , pp. 483-488
    • Ishikawa, T.1    Tsuj, J.2    Ohmori, H.3    Sano, A.4
  • 136
    • 0028262840 scopus 로고
    • Application of Neural Networks to Load-Frequency Control in Power Systems
    • F. Beaufays, Y. Abdel-Magid, and B. Widrow, “Application of Neural Networks to Load-Frequency Control in Power Systems,” Neural Networks, vol 7, no 1, pp 183-194, 1994
    • (1994) Neural Networks , vol.7 , Issue.1 , pp. 183-194
    • Beaufays, F.1    Abdel-Magid, Y.2    Widrow, B.3
  • 137
    • 0028401031 scopus 로고
    • Neurocontrol of Nonlinear Dynamical Systems with Kalman Filter Tratned Recurrent Networks
    • G.V. Puskonus and L. A. Feldkamp, “Neurocontrol of Nonlinear Dynamical Systems with Kalman Filter Tratned Recurrent Networks,” IEEE Trans Neural Networks, vol 5, no 2, pp 279-297, 1994
    • (1994) IEEE Trans Neural Networks , vol.5 , Issue.2 , pp. 279-297
    • Puskonus, G.V.1    Feldkamp, L.A.2
  • 138
    • 0027698750 scopus 로고
    • A Perceptron Network for Functional Identification and Control of Nonlinear Systems
    • N. Sadegh, “A Perceptron Network for Functional Identification and Control of Nonlinear Systems,” IEEE Trans Neural Networks, vol 4, no 6, pp 982-988, 1993
    • (1993) IEEE Trans Neural Networks , vol.4 , Issue.6 , pp. 982-988
    • Sadegh, N.1
  • 139
    • 0027553405 scopus 로고
    • Improving The Dynamic Response of Neural Network Controllers Using Velocity Reference Feedback
    • K. P. Venugopal and S. M. Smith, “Improving The Dynamic Response of Neural Network Controllers Using Velocity Reference Feedback,” IEEE Trans Neural Networks, vol 4, no 2, pp 355-357, 1993
    • (1993) IEEE Trans Neural Networks , vol.4 , Issue.2 , pp. 355-357
    • Venugopal, K.P.1    Smith, S.M.2
  • 140
    • 0026108023 scopus 로고
    • Neural Controller Based on Back-Propagation Algonthm
    • M. Saerens and A. Soquet, “Neural Controller Based on Back-Propagation Algonthm,” IEE Proc F, vol 138, no 1, pp 55-62, 1991
    • (1991) IEE Proc F , vol.138 , Issue.1 , pp. 55-62
    • Saerens, M.1    Soquet, A.2
  • 141
    • 0027261751 scopus 로고
    • Adaptive Control of Dynamic Systems by Back Propagation Networks
    • W.H. Schiffmann and H. W. Geffers, “Adaptive Control of Dynamic Systems by Back Propagation Networks,” Neural Networks, vol 6, pp 517-524, 1993
    • (1993) Neural Networks , vol.6 , pp. 517-524
    • Schiffmann, W.H.1    Geffers, H.W.2
  • 142
    • 0029393161 scopus 로고
    • An On-Line Trained Adaptive Neural Controller
    • Y. Zhang, P. Sen, and G. E. Hem, “An On-Line Trained Adaptive Neural Controller,” IEEE Control Systems Magazine, vol 15, pp 67-75, 1995
    • (1995) IEEE Control Systems Magazine , vol.15 , pp. 67-75
    • Zhang, Y.1    Sen, P.2    Hem, G.E.3
  • 143
    • 0027801631 scopus 로고
    • Dynamic Neural Adaptlve Control Schemes for Linear and Nonlinear Systems
    • (San Francisco, CA)
    • D. H. Rao and M. M. Gupta, “Dynamic Neural Adaptlve Control Schemes for Linear and Nonlinear Systems,” in Proc American Control Conf, (San Francisco, CA), pp 1450-1454, 1993
    • (1993) Proc American Control Conf , pp. 1450-1454
    • Rao, D.H.1    Gupta, M.M.2
  • 144
    • 0030108041 scopus 로고    scopus 로고
    • Multilayer Neura1.Net Robot Controller with Guaranteed Trackmg Performance
    • F.L. Lewis, A. Yesildirek, and K. Liu, “Multilayer Neura1.Net Robot Controller with Guaranteed Trackmg Performance,” IEEE Trans Neural Networks, vol 7, no 2, pp 388-399, 1996
    • (1996) IEEE Trans Neural Networks , vol.7 , Issue.2 , pp. 388-399
    • Lewis, F.1    Yesildirek, A.2    Liu, K.3
  • 145
    • 0029191488 scopus 로고
    • A New Neural Network Control Technique for Robot Mampulators
    • (Seattle, WA)
    • S. Jung and T. C. Hsia, “A New Neural Network Control Technique for Robot Mampulators,” in Proc American Control Conf, (Seattle, WA), pp 878-882, 1995
    • (1995) Proc American Control Conf , pp. 878-882
    • Jung, S.1    Hsia, T.C.2
  • 147
    • 0028563511 scopus 로고
    • Investigation of Kinematm and Inverse Dynamcs Algonthm with a DSP Implementation of a Neural Network
    • (Baltimore, MD)
    • D. Dong, W. N. White, and H. Luo, “Investigation of Kinematm and Inverse Dynamcs Algonthm with a DSP Implementation of a Neural Network,” in Proc American Control Conf, (Baltimore, MD), pp 2460-2464, 1994.
    • (1994) Proc American Control Conf , pp. 2460-2464
    • Dong, D.1    White, W.N.2    Luo, H.3
  • 148
    • 3743085892 scopus 로고
    • A Neural Netwoik Approach to Adaptive Robot Control
    • A. M. S. Zalzala and A. S. Morris, “A Neural Netwoik Approach to Adaptive Robot Control,” Int J Neural Networks, vol 2, no 1, pp 17-35, 1991
    • (1991) Int J Neural Networks , vol.2 , Issue.1 , pp. 17-35
    • Zalzala, A.M.S.1    Morris, A.S.2
  • 150
    • 0028495380 scopus 로고
    • Hierarchical Intelligent Control for Robotic Motion
    • T. Shibata and T. Fukuda, “Hierarchical Intelligent Control for Robotic Motion,” IEEE Trans. Neural Networks, vol. 5, no. 5, pp. 823-832, 1994.
    • (1994) IEEE Trans. Neural Networks , vol.5 , Issue.5 , pp. 823-832
    • Shibata, T.1    Fukuda, T.2
  • 151
    • 0027831281 scopus 로고
    • Neural Network Control for a Closed-Loop System Using Feedback-Error-Leaming
    • H. Gomi and M. Kawato, “Neural Network Control for a Closed-Loop System Using Feedback-Error-Leaming,” Neural Networks, vol. 6, pp. 933-946, 1993.
    • (1993) Neural Networks , vol.6 , pp. 933-946
    • Gomi, H.1    Kawato, M.2
  • 152
    • 0026819616 scopus 로고
    • A New Scheme Combining Neural Feedforward Control with Model-Predictive Control
    • M. Lee and S. Park, “A New Scheme Combining Neural Feedforward Control with Model-Predictive Control,” AIChE J, vol. 38, no. 2, pp. 193-200, 1992.
    • (1992) AIChE J , vol.38 , Issue.2 , pp. 193-200
    • Lee, M.1    Park, S.2
  • 153
    • 0029392197 scopus 로고
    • A Recurrent Neural Network-Based Adaptive Variable Structure Model-Following Control of Robotic Manipulators
    • A. Karakasoglu and M.K. Sundareshan, “A Recurrent Neural Network-Based Adaptive Variable Structure Model-Following Control of Robotic Manipulators,” Aulomatica, vol. 31, no. 10, pp. 1495-1507, 1995.
    • (1995) Aulomatica , vol.31 , Issue.10 , pp. 1495-1507
    • Karakasoglu, A.1    Sundareshan, M.K.2
  • 154
    • 85008015525 scopus 로고
    • Neural Network Control of a Space Manipulator,” IEEE Control Systems Magazine, vol. 13, pp. 14-22, 1993. [ 1561 M. Bahrami and K.E. Tait, “Model Reference Direct Adaptive Control of Nonlinear Plants Using Neural Networks
    • R.T. Newton and Y. Xu, “Neural Network Control of a Space Manipulator,” IEEE Control Systems Magazine, vol. 13, pp. 14-22, 1993. [ 1561 M. Bahrami and K.E. Tait, “Model Reference Direct Adaptive Control of Nonlinear Plants Using Neural Networks,” Int. J. Neural Systems, vol. 5, no. 1, pp. 77-82, 1994.
    • (1994) Int. J. Neural Systems , vol.5 , Issue.1 , pp. 77-82
    • Newton, R.T.1    Xu, Y.2
  • 155
    • 0029373783 scopus 로고
    • Powell's Method Applied to Learning Neural Control of Three Unknown Dynamic Systems
    • C. James Li, L. Yan, and N.W. Chbat, “Powell's Method Applied to Learning Neural Control of Three Unknown Dynamic Systems,” Optim. Control Appl. Methods, vol. 16, pp. 251-262, 1995.
    • (1995) Optim. Control Appl. Methods , vol.16 , pp. 251-262
    • James Li, C.1    Yan, L.2    Chbat, N.W.3
  • 156
    • 0027680412 scopus 로고
    • A Cartpole Experiment Benchmark for Trainable Controllers
    • S. Geva and J. Sitte, “A Cartpole Experiment Benchmark for Trainable Controllers,” IEEE Control Systems Magazine, vol. 13, pp. 40-51, 1993.
    • (1993) IEEE Control Systems Magazine , vol.13 , pp. 40-51
    • Geva, S.1    Sitte, J.2
  • 157
    • 0028016631 scopus 로고
    • A Recurrent Neural Network Controller and Leaming Algorithm for the On-Line Learning Control of Autonomous Underwater Vehicles
    • K.P. Venugopal, A.S. Pandya, and R. Sudhakar, “A Recurrent Neural Network Controller and Leaming Algorithm for the On-Line Learning Control of Autonomous Underwater Vehicles,” Neural Networks, vol. 7, no. 5, pp. 833-846, 1994.
    • (1994) Neural Networks , vol.7 , Issue.5 , pp. 833-846
    • Venugopal, K.P.1    Pandya, A.S.2    Sudhakar, R.3
  • 158
    • 0028564033 scopus 로고
    • Neural Network Designs with Genetic Learning for Control of a Single Link Flexible Manipulator
    • (Baltimore, MD)
    • S. Jain, P.-Y. Peng, A,. Tzes, and F, Khorrami, “Neural Network Designs with Genetic Learning for Control of a Single Link Flexible Manipulator,” in Proc. American Control Conf., (Baltimore, MD), pp. 2570-2574, 1994.
    • (1994) Proc. American Control Conf. , pp. 2570-2574
    • Jain, S.1    Peng, P.-Y.2    Tzes, A.3    Khorrami, F.4
  • 159
    • 0026835531 scopus 로고
    • Neural Network Application for Direct Feedback Controllers
    • Y. Ichikawa and T. Saws, “Neural Network Application for Direct Feedback Controllers,” IEEE Trans. Neural Networks, vol. 3, no. 2, pp. 224-231, 1992.
    • (1992) IEEE Trans. Neural Networks , vol.3 , Issue.2 , pp. 224-231
    • Ichikawa, Y.1    Saws, T.2
  • 160
    • 0029373320 scopus 로고
    • A Neuro-Genetic Controller for Nonminimum Phase Systerns
    • S. Park, L.-J. Park, and C.H. Park, “A Neuro-Genetic Controller for Nonminimum Phase Systerns,” ZEEE Trans. Neural Networks, vol. 6, no. 5, pp. 1297-1300, 1995.
    • (1995) ZEEE Trans. Neural Networks , vol.6 , Issue.5 , pp. 1297-1300
    • Park, S.1    Park, L.-J.2    Park, C.H.3
  • 161
    • 0027656692 scopus 로고
    • Reinforcement Learning Control of Un-known Dynamic Systems
    • Q.H. Wu and A.C. Pugh, “Reinforcement Learning Control of Un-known Dynamic Systems,”IEE Proc. Control Theory Appl., vol. 140, no. 5, pp. 313-322, 1993.
    • (1993) IEE Proc. Control Theory Appl. , vol.140 , Issue.5 , pp. 313-322
    • Wu, Q.H.1    Pugh, A.C.2
  • 162
    • 0020970738 scopus 로고
    • Neuronlike Adaptive Elements That Can Solve Difficult Learning Control Problems
    • A.G. Barto, R.S. Sutton, and C.W. Anderson, “Neuronlike Adaptive Elements That Can Solve Difficult Learning Control Problems,”IEEE Trans. Systems, Man, and Cybernetics, vol. 13, no. 5, pp. 835-846, 1983.
    • (1983) IEEE Trans. Systems, Man, and Cybernetics , vol.13 , Issue.5 , pp. 835-846
    • Barto, A.G.1    Sutton, R.S.2    Anderson, C.W.3
  • 163
    • 0026849113 scopus 로고
    • Process Control Via Artificial Neural Networks and Reinforcement Learning
    • J.C. Hoskins and D.M. Himmelhlau, “Process Control Via Artificial Neural Networks and Reinforcement Learning,” Computers Chem. Engng, vol. 16, no. 4, pp. 241-251, 1992.
    • (1992) Computers Chem. Engng , vol.16 , Issue.4 , pp. 241-251
    • Hoskins, J.C.1    Himmelhlau, D.M.2
  • 164
    • 3743106969 scopus 로고
    • Drive-Reinforcement Learning: a Self-Supervised Model for Adaptive Control
    • J.S. Morgan, E.C. Patterson, and A.H. Klopf, “Drive-Reinforcement Learning: a Self-Supervised Model for Adaptive Control,” Network: Computation in Neural Systems, vol. 1, pp. 439-448, 1990.
    • (1990) Network: Computation in Neural Systems , vol.1 , pp. 439-448
    • Morgan, J.S.1    Patterson, E.C.2    Klopf, A.H.3
  • 165
    • 3743128283 scopus 로고
    • Real-Time Neural Network Control-An IMC Approach
    • (Sydney, Australia)
    • H. Koivisto, V.T. Ruoppila, and H.N. Koivo, “Real-Time Neural Network Control-An IMC Approach,” in Proc. 12th IFAC World Congress, vol. 4, (Sydney, Australia), pp. 47-52, 1993.
    • (1993) Proc. 12th IFAC World Congress , vol.4 , pp. 47-52
    • Koivisto, H.1    Ruoppila, V.T.2    Koivo, H.N.3
  • 166
    • 0026407392 scopus 로고
    • A Modular Connectionist Architecture for Learning Piecewise Control Strategies
    • (Boston, MA)
    • R.A. Jacobs and M.I. Jordan, “A Modular Connectionist Architecture for Learning Piecewise Control Strategies,” in Proc. American Control Conf., (Boston, MA), pp. 1597-1602, 1991.
    • (1991) Proc. American Control Conf. , pp. 1597-1602
    • Jacobs, R.A.1    Jordan, M.I.2
  • 167
    • 0026370731 scopus 로고
    • Regulation of Nonlinear Dynamical Systems Using Multiple Neural Networks
    • (Boston, MA)
    • K.S. Narendra and A.U. Levin, “Regulation of Nonlinear Dynamical Systems Using Multiple Neural Networks,” in Proc. American Control Conf., (Boston, MA), pp. 1609-1614, 1991.
    • (1991) Proc. American Control Conf. , pp. 1609-1614
    • Narendra, K.S.1    Levin, A.U.2
  • 168
    • 0027042946 scopus 로고
    • A Neural Net Control System With Parallel Adaptive Enhancements
    • (Chicago, IL)
    • W.K. Tan and T.H. Lee, “A Neural Net Control System With Parallel Adaptive Enhancements,” in Proc. American Control Conf., (Chicago, IL), pp. 61-62, 1992.
    • (1992) Proc. American Control Conf. , pp. 61-62
    • Tan, W.K.1    Lee, T.H.2
  • 169
    • 0029379749 scopus 로고
    • Adaptive Neuro-Control for Spacecraft Attitude Control
    • K. KrishnaKumar, S. Rickard, and S. Bartholomew, “Adaptive Neuro-Control for Spacecraft Attitude Control,” Neurocomputing, vol. 9, no. 2, pp. 131-148,1995.
    • (1995) Neurocomputing , vol.9 , Issue.2 , pp. 131-148
    • KrishnaKumar, K.1    Rickard, S.2    Bartholomew, S.3
  • 170
    • 0030778044 scopus 로고    scopus 로고
    • Combining Neural and Conventional Paradigms for Modeling, Prediction, and Control
    • M. Aganval, “Combining Neural and Conventional Paradigms for Modeling, Prediction, and Control,” Int. J. Systems Sci., vol. 28, no. 1, pp. 65-81, 1997.
    • (1997) Int. J. Systems Sci. , vol.28 , Issue.1 , pp. 65-81
    • Aganval, M.1
  • 171
    • 0026923902 scopus 로고
    • On Fuzzy Modeling Using Fuzzy Neural Networks with the Back-Propagation Algorithm
    • S. Horikawa, T. Furuhashi, and Y. Uchikawa, “On Fuzzy Modeling Using Fuzzy Neural Networks with the Back-Propagation Algorithm,” IEEE Trans. Neural Networks, vol. 3, no. 5, pp. 801-806, 1992
    • (1992) IEEE Trans. Neural Networks , vol.3 , Issue.5 , pp. 801-806
    • Horikawa, S.1    Furuhashi, T.2    Uchikawa, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.