메뉴 건너뛰기




Volumn 42, Issue 2, 1996, Pages 493-502

Neural network architecture for process control based on the RTRL algorithm

Author keywords

[No Author keywords available]

Indexed keywords

ADAPTIVE CONTROL SYSTEMS; COMPUTER ARCHITECTURE; CONTROL SYSTEM SYNTHESIS; DISCRETE TIME CONTROL SYSTEMS; FEEDFORWARD NEURAL NETWORKS; LEARNING ALGORITHMS; NONLINEAR CONTROL SYSTEMS; REAL TIME SYSTEMS;

EID: 0030081211     PISSN: 00011541     EISSN: None     Source Type: Journal    
DOI: 10.1002/aic.690420218     Document Type: Article
Times cited : (18)

References (31)
  • 1
    • 0019927659 scopus 로고
    • Theoretical investigations of the dynamic behavior of isothermal continuous stirred tank biological reactors
    • Agrawal, P., C. Lee, H. C. Lim, and D. Ramkrishna, "Theoretical Investigations of the Dynamic Behavior of Isothermal Continuous Stirred Tank Biological Reactors," Chem. Eng. Sci., 37, 453 (1982).
    • (1982) Chem. Eng. Sci. , vol.37 , pp. 453
    • Agrawal, P.1    Lee, C.2    Lim, H.C.3    Ramkrishna, D.4
  • 2
    • 0002355083 scopus 로고
    • Connectionist learning for control
    • W. T. Miller, R. S. Sutton, and P. J. Werbos, eds., MIT Press, Cambridge, MA
    • Barto, A. G., "Connectionist Learning for Control," Neural Networks for Control, W. T. Miller, R. S. Sutton, and P. J. Werbos, eds., MIT Press, Cambridge, MA (1990).
    • (1990) Neural Networks for Control
    • Barto, A.G.1
  • 3
    • 0025010309 scopus 로고
    • Use of neural nets for dynamic modeling and control of chemical process systems
    • Bhat, N., and T. J. McAvoy, "Use of Neural Nets for Dynamic Modeling and Control of Chemical Process Systems," Comput. Chem. Eng., 14(4/5), 573 (1990).
    • (1990) Comput. Chem. Eng. , vol.14 , Issue.4-5 , pp. 573
    • Bhat, N.1    McAvoy, T.J.2
  • 4
    • 84973857317 scopus 로고
    • ART2: Self-organisation of stable category recognition codes for analog input patterns
    • Carpenter, G. A., and S. Grossberg, "ART2: Self-Organisation of Stable Category Recognition Codes for Analog Input Patterns," Appl. Opt., 26, 4919 (1987).
    • (1987) Appl. Opt. , vol.26 , pp. 4919
    • Carpenter, G.A.1    Grossberg, S.2
  • 5
    • 0027309738 scopus 로고
    • A method for improving the real-time recurrent learning algorithm
    • Catfolis, T., "A Method for Improving the Real-Time Recurrent Learning Algorithm," Neural Networks, 6, 807 (1993a).
    • (1993) Neural Networks , vol.6 , pp. 807
    • Catfolis, T.1
  • 6
    • 0041802519 scopus 로고
    • Monitoring a control system with a hybrid neural network architecture
    • Amsterdam, The Netherlands
    • Catfolis, T., "Monitoring a Control System with a Hybrid Neural Network Architecture," Proc. Int. Conf. Artificial Neural Networks, Amsterdam, The Netherlands, p. 854 (1993b).
    • (1993) Proc. Int. Conf. Artificial Neural Networks , pp. 854
    • Catfolis, T.1
  • 7
    • 0028751190 scopus 로고
    • Generating adaptive models of dynamic systems with recurrent neural networks
    • Orlando, FL
    • Catfolis, T., "Generating Adaptive Models of Dynamic Systems with Recurrent Neural Networks," Proc. IEEE Int. Conf. Neural Networks, Orlando, FL, 5, p. 3238 (1994).
    • (1994) Proc. IEEE Int. Conf. Neural Networks , vol.5 , pp. 3238
    • Catfolis, T.1
  • 8
    • 0028498609 scopus 로고
    • Dynamic optimisation of nonlinear process by combining neural net model with UDMC
    • Chen, Q., and W. A. Weigand, "Dynamic Optimisation of Nonlinear Process by Combining Neural Net Model with UDMC," AIChE J., 40, 1488 (1994).
    • (1994) AIChE J. , vol.40 , pp. 1488
    • Chen, Q.1    Weigand, W.A.2
  • 9
    • 0026852612 scopus 로고
    • Disturbance pattern classification and neuro-adaptive control
    • Apr.
    • Cooper, D. J., L. Megan, and R. F. Hinde, "Disturbance Pattern Classification and Neuro-Adaptive Control," IEEE Control Syst., 42 (Apr. 1992).
    • (1992) IEEE Control Syst. , pp. 42
    • Cooper, D.J.1    Megan, L.2    Hinde, R.F.3
  • 12
    • 0024880831 scopus 로고
    • Multi-layer feedforward networks are universal approximators
    • Hornik, K., M. Stinchcombe, and H. White, "Multi-layer Feedforward Networks are Universal Approximators," Neural Networks, 2, 359 (1989).
    • (1989) Neural Networks , vol.2 , pp. 359
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 13
    • 0345670761 scopus 로고
    • An artificial neural networks tutorial: 1
    • Karna, K. N., and D. M. Breen, "An Artificial Neural Networks Tutorial: 1," Neural Networks, 1(1), 1 (1989).
    • (1989) Neural Networks , vol.1 , Issue.1 , pp. 1
    • Karna, K.N.1    Breen, D.M.2
  • 14
    • 0025791751 scopus 로고
    • Neural network architecture for adaptive system modeling and control
    • Levin, E., R. Gewirtzman, and G. F. Inbar, "Neural Network Architecture for Adaptive System Modeling and Control," Neural Networks, 4, 185 (1991).
    • (1991) Neural Networks , vol.4 , pp. 185
    • Levin, E.1    Gewirtzman, R.2    Inbar, G.F.3
  • 15
    • 0028756519 scopus 로고
    • How useful are recurrent neural networks for real-time calculation of the average chain length of polymethylmethacrylate?
    • Meert, K., and T. Catfolis, "How Useful are Recurrent Neural Networks for Real-Time Calculation of the Average Chain Length of Polymethylmethacrylate?" Process Control Qual., 6, 195 (1994).
    • (1994) Process Control Qual. , vol.6 , pp. 195
    • Meert, K.1    Catfolis, T.2
  • 16
    • 0028712072 scopus 로고
    • Estimation of the average chain length of polymers with neural classifiers
    • Orlando, FL
    • Meert, K., "Estimation of the Average Chain Length of Polymers with Neural Classifiers," Proc. IEEE Int. Conf. Neural Networks 1994, Orlando, FL, 6, p. 3821 (1994).
    • (1994) Proc. IEEE Int. Conf. Neural Networks 1994 , vol.6 , pp. 3821
    • Meert, K.1
  • 17
    • 0025399567 scopus 로고
    • Identification and control of dynamical systems using neural networks
    • Narendra, K. S., and K. Parthasarathy, "Identification and Control of Dynamical Systems Using Neural Networks," IEEE Trans. Neural Networks, 37(1), 4 (1990).
    • (1990) IEEE Trans. Neural Networks , vol.37 , Issue.1 , pp. 4
    • Narendra, K.S.1    Parthasarathy, K.2
  • 18
    • 0027224322 scopus 로고
    • Identification of linear and nonlinear dynamic systems using recurrent neural networks
    • Pham, D. T., and X. Liu, "Identification of Linear and Nonlinear Dynamic Systems Using Recurrent Neural Networks," Artif. Intell. Eng., 8, 67 (1993).
    • (1993) Artif. Intell. Eng. , vol.8 , pp. 67
    • Pham, D.T.1    Liu, X.2
  • 20
    • 18444368650 scopus 로고
    • Applications of neural networks in robotics and automation for manufacturing
    • W. T. Miller, R. S. Sutton, and P. J. Werbos, eds.
    • Sanderson, A. C., "Applications of Neural Networks in Robotics and Automation for Manufacturing," in Neural Networks for Control W. T. Miller, R. S. Sutton, and P. J. Werbos, eds. (1990).
    • (1990) Neural Networks for Control
    • Sanderson, A.C.1
  • 21
    • 0001623105 scopus 로고
    • A local learning algorithm for dynamic feedforward and recurrent networks
    • Schmidhuber, J., "A Local Learning Algorithm for Dynamic Feedforward and Recurrent Networks," Connect. Sci., 1, 403 (1989).
    • (1989) Connect. Sci. , vol.1 , pp. 403
    • Schmidhuber, J.1
  • 22
    • 0025569234 scopus 로고
    • Neural network based process optimization and control
    • Honolulu, HI
    • Sofge, D. A., and D. A. White, "Neural Network Based Process Optimization and Control," Proc. Conf. Decision and Control, Honolulu, HI, p. 3270 (1990).
    • (1990) Proc. Conf. Decision and Control , pp. 3270
    • Sofge, D.A.1    White, D.A.2
  • 23
    • 0026956790 scopus 로고
    • Process control by on-line trained neural controllers
    • Tanomaru, J., and S. Omatu, "Process Control by On-Line Trained Neural Controllers," IEEE Trans. Ind. Electron., 39(6), 511 (1992).
    • (1992) IEEE Trans. Ind. Electron. , vol.39 , Issue.6 , pp. 511
    • Tanomaru, J.1    Omatu, S.2
  • 24
    • 0003323760 scopus 로고
    • A bioreactor benchmark for adaptive network-based process control
    • W. T. Miller, R. S. Sutton, and P. J. Werbos, eds., MIT Press, Cambridge, MA
    • Ungar, L. H., "A Bioreactor Benchmark for Adaptive Network-based Process Control," Neural Networks for Control, W. T. Miller, R. S. Sutton, and P. J. Werbos, eds., MIT Press, Cambridge, MA (1990).
    • (1990) Neural Networks for Control
    • Ungar, L.H.1
  • 25
    • 0025458937 scopus 로고
    • Process fault detection and diagnosis using neural networks: I. Steady-state processes
    • Venkatasubramanian, V., R. Vaidyanathan, and Y. Yamatomo, "Process Fault Detection and Diagnosis Using Neural Networks: I. Steady-State Processes," Comput. Chem. Eng., 14(7), 699 (1990).
    • (1990) Comput. Chem. Eng. , vol.14 , Issue.7 , pp. 699
    • Venkatasubramanian, V.1    Vaidyanathan, R.2    Yamatomo, Y.3
  • 26
    • 0343021966 scopus 로고
    • Discrete time neural networks
    • Wan, E. A., "Discrete Time Neural Networks," J. Appl. Intell., 3, 91 (1993).
    • (1993) J. Appl. Intell. , vol.3 , pp. 91
    • Wan, E.A.1
  • 27
    • 0024764296 scopus 로고
    • Incipient fault diagnosis of chemical processes via artificial neural networks
    • Watanabe, K., I. Matsuura, M. Abe, M. Kubota, and D. M. Himmelblau, "Incipient Fault Diagnosis of Chemical Processes via Artificial Neural Networks," AIChE J., 35(11), 1803 (1989).
    • (1989) AIChE J. , vol.35 , Issue.11 , pp. 1803
    • Watanabe, K.1    Matsuura, I.2    Abe, M.3    Kubota, M.4    Himmelblau, D.M.5
  • 28
    • 0024888479 scopus 로고
    • Neural networks for control and system identification
    • Tampa, FL
    • Werbos, P. J., "Neural Networks for Control and System Identification," Proc. Conf. Decision and Control, Tampa, FL, p. 260 (1989).
    • (1989) Proc. Conf. Decision and Control , pp. 260
    • Werbos, P.J.1
  • 29
    • 0002011091 scopus 로고
    • A menu of designs for reinforcement learning over time
    • W. T. Miller, R. S. Sutton, and P. J. Werbos, eds., MIT Press, Cambridge, MA
    • Werbos, P. J. "A Menu of Designs for Reinforcement Learning Over Time," Neural Networks for Control, W. T. Miller, R. S. Sutton, and P. J. Werbos, eds., MIT Press, Cambridge, MA (1990).
    • (1990) Neural Networks for Control
    • Werbos, P.J.1
  • 30
    • 0003066062 scopus 로고
    • Experimental analysis of the real-time recurrent learning algorithm
    • Williams, R. J., and D. Zipser, "Experimental Analysis of the Real-Time Recurrent Learning Algorithm," Connec. Sci., 1, 87 (1989).
    • (1989) Connec. Sci. , vol.1 , pp. 87
    • Williams, R.J.1    Zipser, D.2
  • 31
    • 0026862527 scopus 로고
    • Modelling of industrial processes using artificial neural networks
    • Willis, M. J., G. A. Montague, and A. J. Morris, "Modelling of Industrial Processes Using Artificial Neural Networks," Comput. Control Eng. J., 3(3), 113 (1992).
    • (1992) Comput. Control Eng. J. , vol.3 , Issue.3 , pp. 113
    • Willis, M.J.1    Montague, G.A.2    Morris, A.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.