메뉴 건너뛰기




Volumn 9, Issue 3, 1997, Pages 310-319

RNA polymerase II holoenzyme and transcriptional regulation

Author keywords

[No Author keywords available]

Indexed keywords

RNA POLYMERASE II; TRANSCRIPTION FACTOR;

EID: 0030961651     PISSN: 09550674     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0955-0674(97)80002-6     Document Type: Article
Times cited : (94)

References (78)
  • 1
    • 0029846871 scopus 로고    scopus 로고
    • The general transcription factors of RNA polymerase II
    • Orphanides G, Lagrange T, Reinberg D: The general transcription factors of RNA polymerase II. Genes Dev 1996, 10:2657-2683. This definitive review on the GTFs summarizes the properties of many of the GTF polypeptides that are components of polll holoenzyme.
    • (1996) Genes Dev , vol.10 , pp. 2657-2683
    • Orphanides, G.1    Lagrange, T.2    Reinberg, D.3
  • 2
    • 0027253864 scopus 로고
    • A multisubunit complex associated with the RNA polymerase II CTD and TATA-binding protein in yeast
    • Thompson CM, Koleske AJ, Chao DM, Young RA: A multisubunit complex associated with the RNA polymerase II CTD and TATA-binding protein in yeast. Cell 1993, 73:1361-1375.
    • (1993) Cell , vol.73 , pp. 1361-1375
    • Thompson, C.M.1    Koleske, A.J.2    Chao, D.M.3    Young, R.A.4
  • 3
    • 0028347674 scopus 로고
    • An RNA polymerase II holoenzyme responsive to activators
    • Koleske AJ, Young RA: An RNA polymerase II holoenzyme responsive to activators. Nature 1994, 368:466-469.
    • (1994) Nature , vol.368 , pp. 466-469
    • Koleske, A.J.1    Young, R.A.2
  • 5
    • 0029076822 scopus 로고
    • General requirement for RNA polymerase II holoenzymes in vivo
    • + mRNA synthesis in S. cerevisiae. This implies that the mediator in the holoenzyme is generally required for transcription by polll in yeast.
    • (1995) Proc Natl Acad Sci USA , vol.92 , pp. 4587-4590
    • Thompson, C.J.1    Young, R.A.2
  • 6
    • 0028282551 scopus 로고
    • A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II
    • Kim Y-J, Bjorklund S, Li Y, Sayre MH, Kornberg RD: A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 1994, 77:599-608.
    • (1994) Cell , vol.77 , pp. 599-608
    • Kim, Y.-J.1    Bjorklund, S.2    Li, Y.3    Sayre, M.H.4    Kornberg, R.D.5
  • 7
    • 0028289788 scopus 로고
    • TBP-TAF complexes: Selectivity factors for eukaryotic transcription
    • Goodrich JA, Tjian R: TBP-TAF complexes: selectivity factors for eukaryotic transcription. Curr Opin Cell Biol 1994, 6:403-409.
    • (1994) Curr Opin Cell Biol , vol.6 , pp. 403-409
    • Goodrich, J.A.1    Tjian, R.2
  • 8
    • 0028169339 scopus 로고
    • Yeast TAFIIS in a multisubunit complex required for activated transcription
    • Reese JC, Apone L, Walker SS, Griffin LA, Green MR: Yeast TAFIIS in a multisubunit complex required for activated transcription. Nature 1994, 371:523-527.
    • (1994) Nature , vol.371 , pp. 523-527
    • Reese, J.C.1    Apone, L.2    Walker, S.S.3    Griffin, L.A.4    Green, M.R.5
  • 12
    • 0024507111 scopus 로고
    • Mutations in RNA polymerase II enhance or suppress mutations in GAL4
    • Allison LA, Ingles CJ: Mutations in RNA polymerase II enhance or suppress mutations in GAL4. Proc Natl Acad Sci USA 1989, 86:2794-2798.
    • (1989) Proc Natl Acad Sci USA , vol.86 , pp. 2794-2798
    • Allison, L.A.1    Ingles, C.J.2
  • 13
    • 0342936465 scopus 로고    scopus 로고
    • Regulation of gene expression by nucleosomes
    • Svaren J, Horz W: Regulation of gene expression by nucleosomes. Curr Opin Genet Dev 1996, 6:164-170.
    • (1996) Curr Opin Genet Dev , vol.6 , pp. 164-170
    • Svaren, J.1    Horz, W.2
  • 14
    • 0028943781 scopus 로고
    • Stimulation of RNA polymerase II transcription initiation by recruitment of TBP in vivo
    • Klages N, Strubin M: Stimulation of RNA polymerase II transcription initiation by recruitment of TBP in vivo. Nature 1995, 374:822-823.
    • (1995) Nature , vol.374 , pp. 822-823
    • Klages, N.1    Strubin, M.2
  • 15
    • 0028966589 scopus 로고
    • Connecting a promoter-bound protein to TBP bypasses the need for a transcriptional activation domain
    • Chatterjee S, Struhl K: Connecting a promoter-bound protein to TBP bypasses the need for a transcriptional activation domain. Nature 1995, 374:820-822.
    • (1995) Nature , vol.374 , pp. 820-822
    • Chatterjee, S.1    Struhl, K.2
  • 16
    • 0029118222 scopus 로고
    • Recruiting TATA-binding protein to a promoter: Transcriptional activation without an upstream activator
    • Xiao H, Friesen JD, Lis JT: Recruiting TATA-binding protein to a promoter: transcriptional activation without an upstream activator. Mol Cell Biol 1995, 15:5757-5761.
    • (1995) Mol Cell Biol , vol.15 , pp. 5757-5761
    • Xiao, H.1    Friesen, J.D.2    Lis, J.T.3
  • 17
    • 0029005178 scopus 로고
    • Contact with a component of the polymerase II holoenzyme suffices for gene activation
    • Barberis AJ, Pearberg J, Simkovich N, Farrell S, Reinagel P, Bamdad C, Sigal G, Ptashne M: Contact with a component of the polymerase II holoenzyme suffices for gene activation. Cell 1995, 81:359-368. The GAL11P mutation in the holoenzyme component Gal11 enables the mutant protein to bind to amino acids 58-97 of yeast Gal4. In cells with the GAL11P mutation, this portion of Gal4, when tethered to DNA, can function as a strong 'activation domain'. This argues that recruiting holoenzyme to a promoter suffices for high levels of transcription in S. cerevisiae. Almost any holoenzyme component could be the target of a natural activator.
    • (1995) Cell , vol.81 , pp. 359-368
    • Barberis, A.J.1    Pearberg, J.2    Simkovich, N.3    Farrell, S.4    Reinagel, P.5    Bamdad, C.6    Sigal, G.7    Ptashne, M.8
  • 18
    • 0029780704 scopus 로고    scopus 로고
    • Gene activation by recruitment of the RNA polymerase II holoenzyme
    • Farrel S, Simkovich N, Wu Y, Barberis A, Ptashne M: Gene activation by recruitment of the RNA polymerase II holoenzyme. Genes Dev 1996, 10:2359-2367.
    • (1996) Genes Dev , vol.10 , pp. 2359-2367
    • Farrel, S.1    Simkovich, N.2    Wu, Y.3    Barberis, A.4    Ptashne, M.5
  • 19
    • 0023732753 scopus 로고
    • Mechanism of action of a yeast activator: Direct effect of GAL4 derivatives on mammalian TFIID-promoter interactions
    • Horikoshi M, Carey MF, Kakidani H, Roeder RG: Mechanism of action of a yeast activator: direct effect of GAL4 derivatives on mammalian TFIID-promoter interactions. Cell 1988, 54:665-669.
    • (1988) Cell , vol.54 , pp. 665-669
    • Horikoshi, M.1    Carey, M.F.2    Kakidani, H.3    Roeder, R.G.4
  • 20
    • 0029973944 scopus 로고    scopus 로고
    • Assembly of the isomerized TFIIA-TFIID-TATA ternary complex is necessary and sufficient for gene activation
    • ••,18], bypass this isomerization requirement for activation, or does activation in a higher eukaryote require interaction of an activator with TFIID and/or TFIIA?
    • (1996) Genes Dev , vol.10 , pp. 2540-2550
    • Chi, T.1    Carey, M.2
  • 21
    • 0027296170 scopus 로고
    • Transcriptional antitermination
    • Greenblatt J, Nodwell J, Mason S: Transcriptional antitermination. Nature 1993, 364:401-406.
    • (1993) Nature , vol.364 , pp. 401-406
    • Greenblatt, J.1    Nodwell, J.2    Mason, S.3
  • 22
    • 0028969391 scopus 로고
    • Regulation of transcriptional elongation by RNA polymerase II
    • Bentley DL: Regulation of transcriptional elongation by RNA polymerase II. Curr Opin Genet Dev 1995, 5:210-216.
    • (1995) Curr Opin Genet Dev , vol.5 , pp. 210-216
    • Bentley, D.L.1
  • 25
    • 0029791943 scopus 로고    scopus 로고
    • Distinct activated and nonactivated RNA polymerase II complexes in yeast
    • Akhtar A, Faye G, Bentley DL: Distinct activated and nonactivated RNA polymerase II complexes in yeast. EMBO J 1996, 15:4654-4664. Nuclear run-on experiments with yeast are used to show that polll that is bound and transcriptionally engaged at the CYC1 or GAL1 promoter under the influence of Gal4 does not usually reach the 3′ end of the gene if the CTD is truncated or in the absence of Srb2 or the CTD kinase activities of Kin28 or Srb10. This implies that some holoenzyme-specific polypeptides transduce an activating signal that leads to CTD phosphorylation and enables polll to efficiently escape the promoter.
    • (1996) EMBO J , vol.15 , pp. 4654-4664
    • Akhtar, A.1    Faye, G.2    Bentley, D.L.3
  • 26
    • 0028053812 scopus 로고
    • Purification and characterization of a phosphatase from HeLa cells which dephosphorylates the C-terminal domain of RNA polymerase II
    • Chambers RS, Dahmus ME: Purification and characterization of a phosphatase from HeLa cells which dephosphorylates the C-terminal domain of RNA polymerase II. J Biol Chem 1994, 269:26243-26248.
    • (1994) J Biol Chem , vol.269 , pp. 26243-26248
    • Chambers, R.S.1    Dahmus, M.E.2
  • 27
    • 0029043588 scopus 로고
    • The activity of a COOH-terminal domain phosphatase is regulated by a docking site on RNA polymerase II and by the general transcription factors IIB and IIF
    • Chambers RS, Wang BQ, Burton ZF, Dahmus ME: The activity of a COOH-terminal domain phosphatase is regulated by a docking site on RNA polymerase II and by the general transcription factors IIB and IIF. J Biol Chem 1995, 270:14962-14969.
    • (1995) J Biol Chem , vol.270 , pp. 14962-14969
    • Chambers, R.S.1    Wang, B.Q.2    Burton, Z.F.3    Dahmus, M.E.4
  • 28
    • 0029748541 scopus 로고    scopus 로고
    • Purification and characterization of an RNA polymerase II phosphatase from yeast
    • Chambers RS, Kane CM: Purification and characterization of an RNA polymerase II phosphatase from yeast. J Biol Chem 1996, 271:24498-24504.
    • (1996) J Biol Chem , vol.271 , pp. 24498-24504
    • Chambers, R.S.1    Kane, C.M.2
  • 29
    • 0031037856 scopus 로고    scopus 로고
    • The C-terminal domain of RNA polymerase II couples mRNA processing to transcription
    • McCracken S, Fong N, Yankulov K, Ballantyne S, Pan G, Greenblatt J, Patterson SD, Wickens M, Bentley DL: The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature 1997, 385:357-361. Transcription of a gene in transfected cells by a polll that lacks most of its CTD leads to defects in mRNA cleavage and polyadenylation, splicing, and transcription termination. These observations functionally link mRNA processing to the polll CTD. Two cleavage and polyadenylation factors, CPSF and CstF, bind to the CTD. The presence of some CPSF in the polll holoenzyme may explain why 3′-end formation is linked to initiation [77].
    • (1997) Nature , vol.385 , pp. 357-361
    • McCracken, S.1    Fong, N.2    Yankulov, K.3    Ballantyne, S.4    Pan, G.5    Greenblatt, J.6    Patterson, S.D.7    Wickens, M.8    Bentley, D.L.9
  • 30
    • 0028832869 scopus 로고
    • A mammalian RNA polymerase II holoenzyme containing all components required for promoter-specific transcription initiation
    • Ossipow V, Tassan JP, Nigg EA, Schibler U: A mammalian RNA polymerase II holoenzyme containing all components required for promoter-specific transcription initiation. Cell 1995, 83:137-146. A mammalian polll holoenzyme preparation is described for the first time. It contains all the essential GTFs, including TFIID, and is capable of promoter-specific transcription in vitro. As the purification method involves immunoprecipitation with anti-CDK7, the authors are unable to demonstrate that their rat liver holoenzyme is a single complex.
    • (1995) Cell , vol.83 , pp. 137-146
    • Ossipow, V.1    Tassan, J.P.2    Nigg, E.A.3    Schibler, U.4
  • 32
    • 15844390393 scopus 로고    scopus 로고
    • A human RNA polymerase II complex associated with SRB and DNA-repair proteins
    • Maldonado E, Shiekhattar R, Sheldon M, Cho H, Drapkin R, Rickert P, Lees E, Anderson CW, Linn S, Reinberg D: A human RNA polymerase II complex associated with SRB and DNA-repair proteins. Nature 1996, 381:86-89. A purified human polll complex or set of similar complexes contains TFIIE, TFIIF, SRB proteins, a small amount of TFIIH, and many DNA-repair proteins. This suggests that holoenzyme-specific polypeptides may link transcription to DNA repair.
    • (1996) Nature , vol.381 , pp. 86-89
    • Maldonado, E.1    Shiekhattar, R.2    Sheldon, M.3    Cho, H.4    Drapkin, R.5    Rickert, P.6    Lees, E.7    Anderson, C.W.8    Linn, S.9    Reinberg, D.10
  • 34
    • 0028073410 scopus 로고
    • Increased recruitment of TATA-binding protein to the promoter by transcriptional activation domains in vivo
    • Klein C, Struhl K: Increased recruitment of TATA-binding protein to the promoter by transcriptional activation domains in vivo. Science 1994, 266:280-282.
    • (1994) Science , vol.266 , pp. 280-282
    • Klein, C.1    Struhl, K.2
  • 35
    • 0025726160 scopus 로고
    • Functional interdependence of the yeast SNF2, SNF5, and SNF6 proteins in transcriptional activation
    • Laurent BC, Treitel MA, Carlson M: Functional interdependence of the yeast SNF2, SNF5, and SNF6 proteins in transcriptional activation. Proc Natl Acad Sci USA 1991, 88:2687-2691.
    • (1991) Proc Natl Acad Sci USA , vol.88 , pp. 2687-2691
    • Laurent, B.C.1    Treitel, M.A.2    Carlson, M.3
  • 36
    • 0026629865 scopus 로고
    • Involvement of the SIN4 global transcriptional regulator in the chromatin structure of Saccharomyces cerevisiae
    • Jiang YW, Dohrmann PR, Stillman DJ: Involvement of the SIN4 global transcriptional regulator in the chromatin structure of Saccharomyces cerevisiae. Mol Cell Biol 1992, 12:4503-4514.
    • (1992) Mol Cell Biol , vol.12 , pp. 4503-4514
    • Jiang, Y.W.1    Dohrmann, P.R.2    Stillman, D.J.3
  • 37
    • 0029655780 scopus 로고    scopus 로고
    • SSN genes that affect transcriptional repression in Saccharomyces cerevisiae encode SIN4, ROX3, and SRB proteins associated with RNA polymerase II
    • Song W, Treich I, Qian N, Kuchin S, Carlson M: SSN genes that affect transcriptional repression in Saccharomyces cerevisiae encode SIN4, ROX3, and SRB proteins associated with RNA polymerase II. Mol Cell Biol 1996, 16:115-120. Four yeast genes that contribute to glucose repression are shown to encode the holoenzyme components Srb8, Srb9, Sin4 and Rox3. Previous studies showed that mutations in the SRB10 and SRB11 genes had similar effects on glucose repression. A strong implication is that holoenzyme-specific polypeptides transduce the repressing signal emanating from the Tup1 repressor of this control system.
    • (1996) Mol Cell Biol , vol.16 , pp. 115-120
    • Song, W.1    Treich, I.2    Qian, N.3    Kuchin, S.4    Carlson, M.5
  • 38
    • 0029045553 scopus 로고
    • A general mechanism for transcriptional synergy by eukaryotic activators
    • Chi T, Lieberman P, Ellwood K, Carey M: A general mechanism for transcriptional synergy by eukaryotic activators. Nature 1995, 377:254-257.
    • (1995) Nature , vol.377 , pp. 254-257
    • Chi, T.1    Lieberman, P.2    Ellwood, K.3    Carey, M.4
  • 39
    • 0028820136 scopus 로고
    • A class of activation domains interacts directly with TFIIA and stimulates TFIIA-TFIID-promoter complex assembly
    • Kobayashi N, Boyer TG, Berk AJ: A class of activation domains interacts directly with TFIIA and stimulates TFIIA-TFIID-promoter complex assembly. Mol Cell Biol 1995, 15:6465-6473.
    • (1995) Mol Cell Biol , vol.15 , pp. 6465-6473
    • Kobayashi, N.1    Boyer, T.G.2    Berk, A.J.3
  • 40
    • 0030217852 scopus 로고    scopus 로고
    • Mechanisms of transcriptional activation in vivo: Two steps forward
    • Stargell LA, Struhl K: Mechanisms of transcriptional activation in vivo: two steps forward. Trends Genet 1996, 12:311-315.
    • (1996) Trends Genet , vol.12 , pp. 311-315
    • Stargell, L.A.1    Struhl, K.2
  • 41
    • 0027772890 scopus 로고
    • Eukaryotic activators function during multiple steps of preinitiation complex assembly
    • Choy B, Green MR: Eukaryotic activators function during multiple steps of preinitiation complex assembly. Nature 1993, 366:531-536.
    • (1993) Nature , vol.366 , pp. 531-536
    • Choy, B.1    Green, M.R.2
  • 43
    • 0029802124 scopus 로고    scopus 로고
    • Radical mutations reveal TATA-box binding protein surfaces required for activated transcription in vivo
    • Bryant GO, Martel LS, Burley SK, Berk AJ: Radical mutations reveal TATA-box binding protein surfaces required for activated transcription in vivo. Genes Dev 1996, 10:2491-2504.
    • (1996) Genes Dev , vol.10 , pp. 2491-2504
    • Bryant, G.O.1    Martel, L.S.2    Burley, S.K.3    Berk, A.J.4
  • 44
    • 0029737867 scopus 로고    scopus 로고
    • Dimeric ligands define a role for transcriptional activation domains in reinitiation
    • Ho SN, Biggar SR, Spencer DM, Schreiber SL, Crabree GR: Dimeric ligands define a role for transcriptional activation domains in reinitiation. Nature 1996, 382:822-826. A lipid-soluble binary ligand molecule capable of mediating the association of a DNA-binding domain and an activation domain is used for activating transcription. Use of a monomeric ligand to disrupt the interaction shows that continued function of the activation domain is needed for continued activated transcription in yeast and mammalian cells.
    • (1996) Nature , vol.382 , pp. 822-826
    • Ho, S.N.1    Biggar, S.R.2    Spencer, D.M.3    Schreiber, S.L.4    Crabree, G.R.5
  • 45
    • 0023773323 scopus 로고
    • Transcription factor ATF interacts with the TATa factor to facilitate establishment of a preinitiation complex
    • Horikoshi M, Hai T, Lin YS, Green MR, Roeder RG: Transcription factor ATF interacts with the TATA factor to facilitate establishment of a preinitiation complex. Cell 1988, 54:1033-1042.
    • (1988) Cell , vol.54 , pp. 1033-1042
    • Horikoshi, M.1    Hai, T.2    Lin, Y.S.3    Green, M.R.4    Roeder, R.G.5
  • 46
    • 0029925512 scopus 로고    scopus 로고
    • Special HATs for special occasions: Linking histone acetylation to chromatin assembly and gene activation
    • Brownell JE, Allis CD: Special HATs for special occasions: linking histone acetylation to chromatin assembly and gene activation. Curr Opin Genet Dev 1996, 6:176-184.
    • (1996) Curr Opin Genet Dev , vol.6 , pp. 176-184
    • Brownell, J.E.1    Allis, C.D.2
  • 47
    • 0028467446 scopus 로고
    • Stimulation of GAL4 derivative binding to nucleosomal DNA by the yeast SWI/SNF complex
    • Cote J, Quinn J, Workman JL, Peterson CL: Stimulation of GAL4 derivative binding to nucleosomal DNA by the yeast SWI/SNF complex. Science 1994, 265:53-60.
    • (1994) Science , vol.265 , pp. 53-60
    • Cote, J.1    Quinn, J.2    Workman, J.L.3    Peterson, C.L.4
  • 48
    • 0028093378 scopus 로고
    • Nucleosome disruption and enhancement of activator binding by a human SWI/SNF complex
    • Kwon H, Imbalzano AN, Khavari PA, Kingston RE, Green MR: Nucleosome disruption and enhancement of activator binding by a human SWI/SNF complex. Nature 1994, 370:477-481.
    • (1994) Nature , vol.370 , pp. 477-481
    • Kwon, H.1    Imbalzano, A.N.2    Khavari, P.A.3    Kingston, R.E.4    Green, M.R.5
  • 49
    • 0028068714 scopus 로고
    • Facilitated binding of TATA-binding protein to nucleosomal DNA
    • Imbalzano AN, Kwon H, Green MR, Kingston RE: Facilitated binding of TATA-binding protein to nucleosomal DNA. Nature 1994, 370:481-485.
    • (1994) Nature , vol.370 , pp. 481-485
    • Imbalzano, A.N.1    Kwon, H.2    Green, M.R.3    Kingston, R.E.4
  • 50
    • 0029914495 scopus 로고    scopus 로고
    • Multiple SWItches to turn on chromatin?
    • Peterson CL: Multiple SWItches to turn on chromatin? Curr Opin Genet Dev 1996, 6:171-175.
    • (1996) Curr Opin Genet Dev , vol.6 , pp. 171-175
    • Peterson, C.L.1
  • 51
    • 0030447612 scopus 로고    scopus 로고
    • RSC, an essential, abundant chromatin-remodeling complex
    • Cairns BR, Lorch Y, Li Y, Zhang M, Lacomis L, Erdjument-Bromage H, Tempst P, Du J, Laurent B, Kornberg RD: RSC, an essential, abundant chromatin-remodeling complex. Cell 1996, 87:1249-1260. A new yeast chromatin-remodeling enzyme complex is described that is about 10 times more abundant than the SWI/SNF complex and which, unlike the SWI/SNF complex, is encoded by essential genes. It does not copurify with polll holoenzyme.
    • (1996) Cell , vol.87 , pp. 1249-1260
    • Cairns, B.R.1    Lorch, Y.2    Li, Y.3    Zhang, M.4    Lacomis, L.5    Erdjument-Bromage, H.6    Tempst, P.7    Du, J.8    Laurent, B.9    Kornberg, R.D.10
  • 52
    • 0026645025 scopus 로고
    • Genetic isolation of ADA2: A potential transcriptional adaptor required for function of certain acidic activation domains
    • Berger SL, Pina B, Silverman N, Marcus GA, Agapite J, Regier JL, Triezenberg SJ, Guarente L: Genetic isolation of ADA2: a potential transcriptional adaptor required for function of certain acidic activation domains. Cell 1992, 70:251-265.
    • (1992) Cell , vol.70 , pp. 251-265
    • Berger, S.L.1    Pina, B.2    Silverman, N.3    Marcus, G.A.4    Agapite, J.5    Regier, J.L.6    Triezenberg, S.J.7    Guarente, L.8
  • 53
    • 0030606239 scopus 로고    scopus 로고
    • The transcriptional coactivators p300 and CBP are histone acetyltransferases
    • Ogryzko VV, Schiltz RL, Russanova V, Howard BH, Nakatani Y: The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 1996, 87:953-959. Two related coactivators, p300 and CBP, that interact with various activator proteins are shown to have HAT activities. The activators that recruit p300 and CBP should provoke acetylation by p300 and CBP of the core histones in the neighboring chromatin. This may facilitate promoter binding by holoenzyme.
    • (1996) Cell , vol.87 , pp. 953-959
    • Ogryzko, V.V.1    Schiltz, R.L.2    Russanova, V.3    Howard, B.H.4    Nakatani, Y.5
  • 54
    • 0028801404 scopus 로고
    • Amino acid substitutions in the structured domains of histones H3 and H4 partially relieve the requirement of the yeast SWI/SNF complex for transcription
    • Kruger W, Peterson CL, Sil A, Coburn C, Arents G, Moudrianakis EN, Herskowitz I: Amino acid substitutions in the structured domains of histones H3 and H4 partially relieve the requirement of the yeast SWI/SNF complex for transcription. Genes Dev 1995, 9:2770-2779.
    • (1995) Genes Dev , vol.9 , pp. 2770-2779
    • Kruger, W.1    Peterson, C.L.2    Sil, A.3    Coburn, C.4    Arents, G.5    Moudrianakis, E.N.6    Herskowitz, I.7
  • 55
    • 0030935280 scopus 로고    scopus 로고
    • RNA polymerase II holoenzyme recruitment is sufficient to remodel chromatin at the yeast PH05 promoter
    • in press
    • ••] is used to activate transcription of the yeast PHO5 gene in the absence of a true activation domain. This causes elimination of positioned nucleosomes at the PHO5 promoter even when there is no TATA box, indicating that at least one chromatin-remodeling enzyme must associate with polll holoenzyme.
    • (1997) Cell
    • Gaudreau, L.1    Schmid, A.2    Blaschke, D.3    Ptashne, M.4    Horz, W.5
  • 56
    • 0027220589 scopus 로고
    • Protein traffic on the heat shock promoter: Parking, stalling and trucking along
    • Lis J, Wu C: Protein traffic on the heat shock promoter: parking, stalling and trucking along. Cell 1993, 74:1-4.
    • (1993) Cell , vol.74 , pp. 1-4
    • Lis, J.1    Wu, C.2
  • 57
    • 0023513563 scopus 로고
    • Anti-termination of transcription within the long terminal repeat of HIV-1 by tat gene product
    • Kao SY, Calman AF, Luciw PA, Peterlin BM: Anti-termination of transcription within the long terminal repeat of HIV-1 by tat gene product Nature 1987, 330:489-493.
    • (1987) Nature , vol.330 , pp. 489-493
    • Kao, S.Y.1    Calman, A.F.2    Luciw, P.A.3    Peterlin, B.M.4
  • 58
    • 0029880348 scopus 로고    scopus 로고
    • Three functional classes of transcriptional activation domains
    • Blau J, Xiao H, McCracken S, O'Hare P, Greenblatt J, Bentley D: Three functional classes of transcriptional activation domains. Mol Cell Biol 1996, 16:2044-2055. Nuclear run-on and nuclease protection experiments are used to show that Sp1 and CTF (CCAAT box transcription factor) stimulate only transcription initiation, HIV Tat stimulates only elongation, and the acidic activation domains in herpes simplex virus VP16 and human p53 and E2F1 stimulate both initiation and elongation. Activators that stimulate elongation bind TFIIH. They may recruit TFIIH to the promoter or stimulate TFIIH to phosphorylate the polll CTD.
    • (1996) Mol Cell Biol , vol.16 , pp. 2044-2055
    • Blau, J.1    Xiao, H.2    McCracken, S.3    O'Hare, P.4    Greenblatt, J.5    Bentley, D.6
  • 59
    • 0028236808 scopus 로고
    • Transcriptional elongation by RNA polymerase II is stimulated by transactivators
    • Yankulov K, Blau J, Purton T, Roberts S, Bentley D: Transcriptional elongation by RNA polymerase II is stimulated by transactivators. Cell 1994, 77:749-759.
    • (1994) Cell , vol.77 , pp. 749-759
    • Yankulov, K.1    Blau, J.2    Purton, T.3    Roberts, S.4    Bentley, D.5
  • 60
    • 0028305843 scopus 로고
    • Phosphorylation of RNA polymerase II C-terminal domain and transcriptional elongation
    • O'Brien T, Hardin S, Greenleaf A, Lis JT: Phosphorylation of RNA polymerase II C-terminal domain and transcriptional elongation. Nature 1994, 370:75-77.
    • (1994) Nature , vol.370 , pp. 75-77
    • O'Brien, T.1    Hardin, S.2    Greenleaf, A.3    Lis, J.T.4
  • 61
    • 0029942906 scopus 로고    scopus 로고
    • TFIIH functions in regulating transcriptional elongation by RNA polymerase II in Xenopus oocytes
    • Yankulov KY, Pandes M, McCracken S, Bouchard D, Bentley DL: TFIIH functions in regulating transcriptional elongation by RNA polymerase II in Xenopus oocytes. Mol Cell Biol 1996, 16:3291-3299.
    • (1996) Mol Cell Biol , vol.16 , pp. 3291-3299
    • Yankulov, K.Y.1    Pandes, M.2    McCracken, S.3    Bouchard, D.4    Bentley, D.L.5
  • 62
    • 0029959881 scopus 로고    scopus 로고
    • Control of RNA polymerase II elongation potential by a novel carboxyl-terminal domain kinase
    • Marshall NF, Peng J, Xie Z, Price DH: Control of RNA polymerase II elongation potential by a novel carboxyl-terminal domain kinase. J Biol Chem 1996, 271:27176-27183.
    • (1996) J Biol Chem , vol.271 , pp. 27176-27183
    • Marshall, N.F.1    Peng, J.2    Xie, Z.3    Price, D.H.4
  • 64
    • 0029956642 scopus 로고    scopus 로고
    • Enhanced processivity of RNA polymerase II triggered by Tat-induced phosphorylation of its carboxy-terminal domain
    • Parada CA, Roeder RG: Enhanced processivity of RNA polymerase II triggered by Tat-induced phosphorylation of its carboxy-terminal domain. Nature 1996, 384:375-378. HIV Tat stimulates purified TFIIH to phosphorylate the recombinant polll CTD. Citrate inhibits both CTD phosphorylation and efficient elongation by polll in reactions containing HeLa nuclear extract. Both effects of citrate are reversed by Tat, suggesting that Tat stimulates elongation by causing TFIIH to phosphorylate the CTD.
    • (1996) Nature , vol.384 , pp. 375-378
    • Parada, C.A.1    Roeder, R.G.2
  • 65
    • 15844396178 scopus 로고    scopus 로고
    • Purification of an RNA polymerase II transcript release factor from Drosophila
    • Xie Z, Price DH: Purification of an RNA polymerase II transcript release factor from Drosophila. J Biol Chem 1996, 271:11043-11046.
    • (1996) J Biol Chem , vol.271 , pp. 11043-11046
    • Xie, Z.1    Price, D.H.2
  • 66
    • 0025877255 scopus 로고
    • Transcription on nucleosomal templates by RNA polymerase II in vitro: Inhibition of elongation with enhancement of sequence-specific pausing
    • Izban MG, Luse DS: Transcription on nucleosomal templates by RNA polymerase II in vitro: inhibition of elongation with enhancement of sequence-specific pausing. Genes Dev 1991, 5:683-696.
    • (1991) Genes Dev , vol.5 , pp. 683-696
    • Izban, M.G.1    Luse, D.S.2
  • 67
    • 0028937199 scopus 로고
    • A kinase-cyclin pair in the RNA polymerase II holoenzyme
    • Liao SM, Zhang J, Jeffery DA, Koleske AJ, Thompson CM, Chao DM, Viljoen M, Van Vuuren HJ, Young RA: A kinase-cyclin pair in the RNA polymerase II holoenzyme. Nature 1995, 374:193-196. Two polypeptides that copurify with the yeast polll holoenzyme constitute a kinase-cyclin pair. These polypeptides are Srb10 (CDK8) and Srb11 (cyclin C) and they can phosphorylate the polll CTD in vitro. Cells lacking Srb10 have defects in activation and repression and contain polll with an underphosphorylated CTD.
    • (1995) Nature , vol.374 , pp. 193-196
    • Liao, S.M.1    Zhang, J.2    Jeffery, D.A.3    Koleske, A.J.4    Thompson, C.M.5    Chao, D.M.6    Viljoen, M.7    Van Vuuren, H.J.8    Young, R.A.9
  • 68
    • 0029008667 scopus 로고
    • The KIN28 gene is required for RNA polymerase II-mediated transcription and phosphorylation of the Rpblp CTD
    • Valay J-G, Simon M, Dubois M-F, Bensaude O, Facca C, Faya G: The KIN28 gene is required for RNA polymerase II-mediated transcription and phosphorylation of the Rpblp CTD. J Mol Biol 1995, 24:535-544.
    • (1995) J Mol Biol , vol.24 , pp. 535-544
    • Valay, J.-G.1    Simon, M.2    Dubois, M.-F.3    Bensaude, O.4    Facca, C.5    Faya, G.6
  • 69
    • 0029739903 scopus 로고    scopus 로고
    • Quantitation of putative activator-target affinities predicts transcriptional activating potentials
    • Wu Y, Reece RJ, Ptashne M: Quantitation of putative activator-target affinities predicts transcriptional activating potentials. EMBO J 1996, 15:3951-3963.
    • (1996) EMBO J , vol.15 , pp. 3951-3963
    • Wu, Y.1    Reece, R.J.2    Ptashne, M.3
  • 70
    • 0030248746 scopus 로고    scopus 로고
    • Mediator of transcriptional regulation
    • Bjorklund S, Kim Y-J: Mediator of transcriptional regulation. Trends Biochem Sci 1996, 21:335-337.
    • (1996) Trends Biochem Sci , vol.21 , pp. 335-337
    • Bjorklund, S.1    Kim, Y.-J.2
  • 71
    • 0028826925 scopus 로고
    • Yeast global transcriptional regulators Sin4 and Rgr1 are components of mediator complex/RNA polymerase II holoenzyme
    • Li Y, Bjorklund S, Jiang YW, Kim YJ, Lane WS, Stillman DJ, Kornberg RD: Yeast global transcriptional regulators Sin4 and Rgr1 are components of mediator complex/RNA polymerase II holoenzyme. Proc Natl Acad Sci USA 1995, 92:10864-10868. The yeast mediator complex is shown to contain Sin4 and Rgr1 proteins, which were implicated previously in activation and repression. Sin4 and Rgr1 are present in a subcomplex containing Gal11 and a 50kDa polypeptide. Therefore, the mediator is a 'signal transducer' that mediates responses to both activators and repressors.
    • (1995) Proc Natl Acad Sci USA , vol.92 , pp. 10864-10868
    • Li, Y.1    Bjorklund, S.2    Jiang, Y.W.3    Kim, Y.J.4    Lane, W.S.5    Stillman, D.J.6    Kornberg, R.D.7
  • 72
    • 0029038690 scopus 로고
    • Cyclin-dependent protein kinase and cyclin homologs SSN3 and SSN8 contribute to transcriptional control in yeast
    • Kuchin S, Yeghiayan P, Carlson M: Cyclin-dependent protein kinase and cyclin homologs SSN3 and SSN8 contribute to transcriptional control in yeast. Proc Natl Acad Sci USA 1995, 92:4006-4010.
    • (1995) Proc Natl Acad Sci USA , vol.92 , pp. 4006-4010
    • Kuchin, S.1    Yeghiayan, P.2    Carlson, M.3
  • 73
    • 0028920526 scopus 로고
    • Identification of genes required for alpha 2 repression in Saccharomyces cerevisiae
    • Wahi M, Johnson AD: Identification of genes required for alpha 2 repression in Saccharomyces cerevisiae. Genetics 1995, 140:79-90.
    • (1995) Genetics , vol.140 , pp. 79-90
    • Wahi, M.1    Johnson, A.D.2
  • 74
    • 0028803749 scopus 로고
    • Three subunits of the RNA polymerase II mediator complex are involved in glucose repression
    • Balciunas D, Ronne H: Three subunits of the RNA polymerase II mediator complex are involved in glucose repression. Nucleic Acids Res 1995, 23:4421-4425.
    • (1995) Nucleic Acids Res , vol.23 , pp. 4421-4425
    • Balciunas, D.1    Ronne, H.2
  • 75
    • 0029959435 scopus 로고    scopus 로고
    • The C-terminal domain of the largest subunit of RNA polymerase II interacts with a novel set of serine/arginine-rich proteins
    • Yuryev A, Patturajan M, Litingtung Y, Joshi RV, Gentile C, Gebara M, Corden JL: The C-terminal domain of the largest subunit of RNA polymerase II interacts with a novel set of serine/arginine-rich proteins. Proc Natl Acad Sci USA 1996, 93:6975-6980.
    • (1996) Proc Natl Acad Sci USA , vol.93 , pp. 6975-6980
    • Yuryev, A.1    Patturajan, M.2    Litingtung, Y.3    Joshi, R.V.4    Gentile, C.5    Gebara, M.6    Corden, J.L.7
  • 77
    • 0022975147 scopus 로고
    • Formation of the 3′ end of U1 snRNA requires compatible snRNA promoter elements
    • Hernandez N, Weiner AM: Formation of the 3′ end of U1 snRNA requires compatible snRNA promoter elements. Cell 1986, 47:249-258.
    • (1986) Cell , vol.47 , pp. 249-258
    • Hernandez, N.1    Weiner, A.M.2
  • 78
    • 0022819015 scopus 로고
    • Alpha-thalassaemia caused by a poly (A) site mutation reveals that transcriptional termination is linked to 3′ end processing in the human alpha 2 globin gene
    • Whitelaw E, Proudfoot N: Alpha-thalassaemia caused by a poly (A) site mutation reveals that transcriptional termination is linked to 3′ end processing in the human alpha 2 globin gene. EMBO J 1986, 5:2915-2922.
    • (1986) EMBO J , vol.5 , pp. 2915-2922
    • Whitelaw, E.1    Proudfoot, N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.