-
3
-
-
1842280277
-
-
A. P. Levitt, Ed. Wiley-lnterscience, New York
-
A. P. Levitt, in Whisker Technology, A. P. Levitt, Ed. (Wiley-lnterscience, New York, 1970), pp. 1-13.
-
(1970)
Whisker Technology
, pp. 1-13
-
-
Levitt, A.P.1
-
5
-
-
0004289964
-
-
Mills and Boon, London
-
C. C. Evans, Whiskers (Mills and Boon, London, 1972), pp. 46-65.
-
(1972)
Whiskers
, pp. 46-65
-
-
Evans, C.C.1
-
6
-
-
0022045296
-
-
J. J. Petrovic, J. V. Mitewski, D. L. Rohr, F. D. Gac, J. Mater. Sci. 20, 1167 (1985); J. J. Petrovic and R. C. Hoover, ibid. 22, 517 (1987).
-
(1985)
J. Mater. Sci.
, vol.20
, pp. 1167
-
-
Petrovic, J.J.1
Mitewski, J.V.2
Rohr, D.L.3
Gac, F.D.4
-
7
-
-
0023294808
-
-
J. J. Petrovic, J. V. Mitewski, D. L. Rohr, F. D. Gac, J. Mater. Sci. 20, 1167 (1985); J. J. Petrovic and R. C. Hoover, ibid. 22, 517 (1987).
-
(1987)
J. Mater. Sci.
, vol.22
, pp. 517
-
-
Petrovic, J.J.1
Hoover, R.C.2
-
10
-
-
0346551592
-
-
S. Iijima, C. Brabec, A. Marti, J. Bernholc, J. Chem. Phys. 104, 2089 (1996).
-
(1996)
J. Chem. Phys.
, vol.104
, pp. 2089
-
-
Iijima, S.1
Brabec, C.2
Marti, A.3
Bernholc, J.4
-
14
-
-
0041615324
-
-
Electrochemical Society, Reno, NV, 16 to 21 May 1995, R. S. Ruoff and K. M. Kadish, Eds. Electrochemical Society, Pennington, NJ
-
S. Subramoney, R. S. Ruoff, R. Laduca, S. Awadalla, K. Parvin, in Proceedings of the Symposium on Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials, Electrochemical Society, Reno, NV, 16 to 21 May 1995, R. S. Ruoff and K. M. Kadish, Eds. (Electrochemical Society, Pennington, NJ, 1995), pp. 557-562.
-
(1995)
Proceedings of the Symposium on Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials
, pp. 557-562
-
-
Subramoney, S.1
Ruoff, R.S.2
Laduca, R.3
Awadalla, S.4
Parvin, K.5
-
15
-
-
0028533577
-
-
D. T. Colbert et al., Science 266, 1218 (1994).
-
(1994)
Science
, vol.266
, pp. 1218
-
-
Colbert, D.T.1
-
16
-
-
58149212911
-
-
T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley, Chem. Phys. Lett. 243, 49 (1995); A. Thess et al., Science 273, 483 (1996).
-
(1995)
Chem. Phys. Lett.
, vol.243
, pp. 49
-
-
Guo, T.1
Nikolaev, P.2
Thess, A.3
Colbert, D.T.4
Smalley, R.E.5
-
17
-
-
6444244907
-
-
T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley, Chem. Phys. Lett. 243, 49 (1995); A. Thess et al., Science 273, 483 (1996).
-
(1996)
Science
, vol.273
, pp. 483
-
-
Thess, A.1
-
18
-
-
0029321505
-
-
H. Dai, E. W. Wong, Y. Z. Lu, S. Fan, C. M. Lieber, Nature 375, 769 (1995).
-
(1995)
Nature
, vol.375
, pp. 769
-
-
Dai, H.1
Wong, E.W.2
Lu, Y.Z.3
Fan, S.4
Lieber, C.M.5
-
20
-
-
1842393927
-
-
R. H. Kelsey, in (3), pp. 135-156.
-
R. H. Kelsey, in (3), pp. 135-156.
-
-
-
-
22
-
-
0009808872
-
-
N. Osakabe, K. Harada, M. I. Lutwyche, H. Kasai, A. Tonomura, Appl. Phys. Lett. 70, 940 (1997).
-
(1997)
Appl. Phys. Lett.
, vol.70
, pp. 940
-
-
Osakabe, N.1
Harada, K.2
Lutwyche, M.I.3
Kasai, H.4
Tonomura, A.5
-
25
-
-
1842350226
-
-
The lateral load causes the nanobeam to exert an upward force on the cantilever-tip assembly. When this upward force exceeds the applied normal load, the tip passes over the nanobeam. The applied normal load can be varied in our experiments to control the degree to which the nanobeams are deflected
-
The lateral load causes the nanobeam to exert an upward force on the cantilever-tip assembly. When this upward force exceeds the applied normal load, the tip passes over the nanobeam. The applied normal load can be varied in our experiments to control the degree to which the nanobeams are deflected.
-
-
-
-
27
-
-
1842319484
-
-
The boundary conditions arey (x = 0) = y′ (x = 0) = 0 and y″ (x = L) = y′″ (x = L) = 0, where X = L corresponds to the end of the beam. Furthermore, the force P is only applied at the point a
-
The boundary conditions arey (x = 0) = y′ (x = 0) = 0 and y″ (x = L) = y′″ (x = L) = 0, where X = L corresponds to the end of the beam. Furthermore, the force P is only applied at the point a.
-
-
-
-
28
-
-
1842387012
-
-
1/3Δ, where Δ corresponds to deviation in the pinning point from the edge of the SiO pad. The corrections to the pinning point from this analysis are up to 50 nm
-
1/3Δ, where Δ corresponds to deviation in the pinning point from the edge of the SiO pad. The corrections to the pinning point from this analysis are up to 50 nm.
-
-
-
-
29
-
-
1842283171
-
-
4
-
4.
-
-
-
-
30
-
-
1842345396
-
-
note
-
2 interfaces (resulting in energy dissipation). Second, motion of the NR underneath the thin SiO pinning film would change the topography of the pad. Our AFM measurements show no evidence of this.
-
-
-
-
31
-
-
0001256655
-
-
W. R. L. Lambrecht, B. Segall, M. Methfessel, M. van Schilfgaarde, Phys. Rev. B 44, 3685 (1991).
-
(1991)
Phys. Rev. B
, vol.44
, pp. 3685
-
-
Lambrecht, W.R.L.1
Segall, B.2
Methfessel, M.3
Van Schilfgaarde, M.4
-
32
-
-
1842308034
-
-
2 interface
-
2 interface.
-
-
-
-
33
-
-
1842395802
-
-
4, this assumption produces only a very small error on the order of 0.01%
-
4, this assumption produces only a very small error on the order of 0.01%.
-
-
-
-
34
-
-
0014824142
-
-
O. L. Blakslee, D. G. Proctor, E. J. Seldin, G. B. Spence, T. Weng, J. Appl. Phyys. 41, 3373 (1970).
-
(1970)
J. Appl. Phyys.
, vol.41
, pp. 3373
-
-
Blakslee, O.L.1
Proctor, D.G.2
Seldin, E.J.3
Spence, G.B.4
Weng, T.5
-
39
-
-
1842275413
-
-
2 substrate is atomically flat in the region where the force discontinuity is observed. Furthermore, the topographic signal, which was recorded at the same time as F, is constant across the region of force discontinuity
-
2 substrate is atomically flat in the region where the force discontinuity is observed. Furthermore, the topographic signal, which was recorded at the same time as F, is constant across the region of force discontinuity.
-
-
-
-
40
-
-
1842310904
-
-
Mechanical deformation of metal whiskers ultimately leads to a decrease in the initial linear (elastic) F-d behavior. This decrease is, however, due to plastic deformations (4)
-
Mechanical deformation of metal whiskers ultimately leads to a decrease in the initial linear (elastic) F-d behavior. This decrease is, however, due to plastic deformations (4).
-
-
-
-
42
-
-
1842344454
-
-
note
-
The bending strength is relevant to composites formed with randomly oriented nanotubes or NRs. In a composite made with oriented nanotubes or NRs, the tensile and compressive strengths should also be considered. The tensile and bending strengths are comparable for SiC whiskers (6, 7) and are also expected to be similar for SiC NRs. The tensile strength of a carbon nanotube is, however, expected to be substantially larger than the nanotube bending strength and the strength of SiC NRs.
-
-
-
-
43
-
-
1842311919
-
-
We thank J. W. Hutchinson and F. Spaepen for helpful discussions and S. Shepard for assistance with SiO deposition. C.M.L. acknowledges partial support of this work by the NSF Division of Materials Research and the Air Force Office of Scientific Research
-
We thank J. W. Hutchinson and F. Spaepen for helpful discussions and S. Shepard for assistance with SiO deposition. C.M.L. acknowledges partial support of this work by the NSF Division of Materials Research and the Air Force Office of Scientific Research.
-
-
-
|