-
1
-
-
0342819025
-
-
S. Iijima, Nature 354, 56 (1991).
-
(1991)
Nature
, vol.354
, pp. 56
-
-
Iijima, S.1
-
2
-
-
0038033665
-
-
_ and T. Ichihashi, ibid. 363, 603 (1993); D. S. Bethune et al., ibid., p. 605.
-
(1993)
Nature
, vol.363
, pp. 603
-
-
Ichihashi, T.1
-
3
-
-
84914709730
-
-
_ and T. Ichihashi, ibid. 363, 603 (1993); D. S. Bethune et al., ibid., p. 605.
-
Nature
, pp. 605
-
-
Bethune, D.S.1
-
4
-
-
0347959060
-
-
L. Chico, V. H. Crespi, L. X. Benedict, S. G. Louie, M. L. Cohen, Phys. Rev. Lett. 76, 971 (1996).
-
(1996)
Phys. Rev. Lett.
, vol.76
, pp. 971
-
-
Chico, L.1
Crespi, V.H.2
Benedict, L.X.3
Louie, S.G.4
Cohen, M.L.5
-
7
-
-
58149212911
-
-
T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley, ibid. 243, 49 (1995).
-
(1995)
Chem. Phys. Lett.
, vol.243
, pp. 49
-
-
Guo, T.1
Nikolaev, P.2
Thess, A.3
Colbert, D.T.4
Smalley, R.E.5
-
8
-
-
21544463328
-
-
60 and other small fullerenes. As an improvement over the method described previously (6), the initial laser vaporization pulse (532 nm, 250 mJ in a 5-mm-diameter spot at 10 Hz) was followed 50 ns later by a second pulse (1064 nm, 300 mJ in a 7-mm-diameter Gaussian spot coaxial with the first laser) to provide more uniform vaporization of the target [G. Koran, R. J. Baseman, A. Gupta, M. I. Lutwyche, R. B. Laibowitz, Appl. Phys. Lett. 56, 2144 (1990); S. Witanachchi and P. Mukherjee, J. Vac. Sci. Technol. A 13, 1171 (1995)].
-
(1990)
Appl. Phys. Lett.
, vol.56
, pp. 2144
-
-
Koran, G.1
Baseman, R.J.2
Gupta, A.3
Lutwyche, M.I.4
Laibowitz, R.B.5
-
9
-
-
0029305556
-
-
60 and other small fullerenes. As an improvement over the method described previously (6), the initial laser vaporization pulse (532 nm, 250 mJ in a 5-mm-diameter spot at 10 Hz) was followed 50 ns later by a second pulse (1064 nm, 300 mJ in a 7-mm-diameter Gaussian spot coaxial with the first laser) to provide more uniform vaporization of the target [G. Koran, R. J. Baseman, A. Gupta, M. I. Lutwyche, R. B. Laibowitz, Appl. Phys. Lett. 56, 2144 (1990); S. Witanachchi and P. Mukherjee, J. Vac. Sci. Technol. A 13, 1171 (1995)].
-
(1995)
J. Vac. Sci. Technol. A
, vol.13
, pp. 1171
-
-
Witanachchi, S.1
Mukherjee, P.2
-
10
-
-
9444289001
-
-
note
-
The diffractometer was a sealed Cu tube (wave-length λ = 1.54 Å) operating at 1 kW, with a flat graphite(002) monochromator, a fixed sample angle at grazing incidence, and a linear detector (radius 25 cm) that allowed parallel accumulation of 4096 channels covering 120° in 2θ. We assumed no preferred orientation of the rope crystallites, which was a concern because our flat-plate diffractometer had no provision for rotating the sample during data collection. Two observations convinced us that the rope axes were indeed randomly oriented within the mat: (i) We compared flat-plate profiles collected at several incident angles and found no difference in relative intensities, (ii) We measured a profile from a spinning capillary sample (Debye-Scherrer geometry) and again found relative intensities similar to those from the flat plate, albeit with a poorer signal/noise ratio because of the smaller scattering volume and the additional diffuse scattering from the capillary.
-
-
-
-
11
-
-
0028257954
-
-
O. Zhou et al., Science 263, 1744 (1994); D. Reznik, C. H. Olk, D. A. Neumann, J. R. D. Copley, Phys. Rev. B 52, 116 (1995).
-
(1994)
Science
, vol.263
, pp. 1744
-
-
Zhou, O.1
-
12
-
-
0000694343
-
-
O. Zhou et al., Science 263, 1744 (1994); D. Reznik, C. H. Olk, D. A. Neumann, J. R. D. Copley, Phys. Rev. B 52, 116 (1995).
-
(1995)
Phys. Rev. B
, vol.52
, pp. 116
-
-
Reznik, D.1
Olk, C.H.2
Neumann, D.A.3
Copley, J.R.D.4
-
13
-
-
9444282915
-
-
note
-
-1 can also be indexed on the triangular lattice.
-
-
-
-
14
-
-
9444235372
-
-
note
-
5v, symmetry].
-
-
-
-
18
-
-
11944268480
-
-
A single rope was attached to a sharpened Pt electrode and pulled out from a tangle of the raw SWNT mat material. Under an optical microscope (magnification x800), a current of 0.1 to 1 μA was run along the rope by connection of opposite poles of a stable dc current source to wires leading to the Pt electrode and the mat. The voltage drop along the SWNT rope was then measured between two arc-grown MWNTs mounted on carbon fibers [A. G. Rinzler et al., Science 269, 1550 (1995)] and positioned into contact on the side of the SWNT rope at a measured distance of 5 to 10 μm. The rope was then imaged directly by TEM to determine its diameter.
-
(1995)
Science
, vol.269
, pp. 1550
-
-
Rinzler, A.G.1
-
19
-
-
0003330557
-
-
M. Cardona et al., Eds., of Springer Series in Materials Science Springer-Verlag, New York
-
M. S. Dresselhaus, G. Dresselhaus, K. Sugihara, I. L. Spain, H. A. Goldberg, in Graphite Fibers and Filaments, M. Cardona et al., Eds., vol. 5 of Springer Series in Materials Science (Springer-Verlag, New York, 1988), pp. 188-202.
-
(1988)
Graphite Fibers and Filaments
, vol.5
, pp. 188-202
-
-
Dresselhaus, M.S.1
Dresselhaus, G.2
Sugihara, K.3
Spain, I.L.4
Goldberg, H.A.5
-
20
-
-
0030126336
-
-
∥ reported above and provides further evidence that the ropes within the mat material are continuous for hundreds of micrometers. More-over, the mat measurement yielded a positive temperature derivative dp/dT near 300 K, a definitive sign of metallic behavior. In contrast, a recent measurement of an individual MWNT shows thermally activated conductance (negative dp/dT) [L. Langer et al., Phys. Rev. Lett. 76, 479 (1996)].
-
(1996)
Science
, vol.272
, pp. 523
-
-
Dai, H.1
Wong, E.W.2
Lieber, C.M.3
-
21
-
-
0000509291
-
-
∥ reported above and provides further evidence that the ropes within the mat material are continuous for hundreds of micrometers. More-over, the mat measurement yielded a positive temperature derivative dp/dT near 300 K, a definitive sign of metallic behavior. In contrast, a recent measurement of an individual MWNT shows thermally activated conductance (negative dp/dT) [L. Langer et al., Phys. Rev. Lett. 76, 479 (1996)].
-
(1996)
Phys. Rev. Lett.
, vol.76
, pp. 479
-
-
Langer, L.1
-
23
-
-
9444276873
-
-
in preparation
-
We recently produced SWNTs 0.7 to 3 nm in diameter with preformed Ni-Co metal particles on a fumed alumina support from a CO reactant gas at 1 atm and 1100°C [H. Dai et al., in preparation]. Each of these SWNTs was found to have a metal particle at its tip, with a diameter appropriate to the tube it catalyzed.
-
-
-
Dai, H.1
-
24
-
-
0028060610
-
-
S. Amelinckx et al., Science 265, 635 (1994).
-
(1994)
Science
, vol.265
, pp. 635
-
-
Amelinckx, S.1
-
25
-
-
0002181499
-
-
J. L. Figueiredo et al., Eds. Kluwer Academic, Amsterdam
-
G. G. Tibbetts, in Carbon Fibers, Filaments and Composites. J. L. Figueiredo et al., Eds. (Kluwer Academic, Amsterdam, 1990), pp. 73-94.
-
(1990)
Carbon Fibers, Filaments and Composites
, pp. 73-94
-
-
Tibbetts, G.G.1
-
26
-
-
9444291009
-
-
note
-
4 atoms.
-
-
-
-
30
-
-
1542624160
-
-
C. H. Xu, C. Z. Wang, C. T. Chan, K. M. Ho, J. Phys. Cond. Matter 4, 6047 (1992).
-
(1992)
J. Phys. Cond. Matter
, vol.4
, pp. 6047
-
-
Xu, C.H.1
Wang, C.Z.2
Chan, C.T.3
Ho, K.M.4
-
32
-
-
9444296810
-
-
note
-
tb = 2.0 eV from local density functional calculations (27). Zero-helicity armchair tubes are those with a = b.
-
-
-
-
34
-
-
0004250441
-
-
of International Series of Monographs on Chemistry Clarendon, Oxford
-
P. W. Fowler and D. E. Manolopoulos, An Atlas of Fullerenes, vol. 30 of International Series of Monographs on Chemistry (Clarendon, Oxford, 1995).
-
(1995)
An Atlas of Fullerenes
, vol.30
-
-
Fowler, P.W.1
Manolopoulos, D.E.2
-
35
-
-
0030570070
-
-
B. R. Eggen et al., Science 272, 87 (1996).
-
(1996)
Science
, vol.272
, pp. 87
-
-
Eggen, B.R.1
-
36
-
-
9444270104
-
-
note
-
crit > 600 atoms.
-
-
-
-
37
-
-
9444279287
-
-
unpublished results
-
Electron diffraction with probe electron beams (diameter 1 to 2 nm) on individual ropes of this laser-oven SWNT material shows that the dominant tubes in these ropes are zero-helicity armchair tubes (J. Cowley, unpublished results).
-
-
-
Cowley, J.1
-
39
-
-
9444235371
-
-
note
-
Supported by the Office of Naval Research (grant N0014-91-J1794 and order number N00014-95-F-0099), the Air Force Office of Scientific Research (grant F49620-95-0203), the Advanced Technology Program of the State of Texas (grant 003604-047), NSF (grants DMR-95-22251, CHE-93-21297, and PHY-92-24745), the Robert A. Welch Foundation (grant C-0689), the U.S. Department of Energy (grant DEFC02-86ER45254), and CNRS.
-
-
-
|