-
1
-
-
0024544076
-
-
Photochemical production of tropospheric ozone has been studied extensively [J. H. Seinfeld, Science 243, 745 (1989); National Academy of Sciences, Rethinking the Ozone Problem in Urban and Regional Air Pollution (National Academy of Sciences, Washington, DC, 1991); U.S. Environmental Protection Agency, National Air Quality and Emissions Trends Report, 1995 (EPA454/R-96-005, 1996); B. J. Finlayson-Pitts and J. N. Pitts Jr., Science 276, 1045 (1997). The effect of aerosols on UV flux and photochemical ozone production near Earth's surface has generally been assumed to be small and negative, that is, the presence of aerosols reduces slightly the rate of smog formation [L. Zafonte, P. Rieger, J. Holmes, Environ. Sci. Technol. 11, 483 (1977); S. Liu, S. McKeen, S. Madronich, Geophys. Res. Lett. 18, 2265 (1991); Y. Lu and M. A. K. Khalil, Chemosphere 32, 739 (1996)]. Operation of many smog models, such as the Urban Airshed Models, is generally conducted without regard to the radiative effects of aerosols [U.S. Environmental Protection Agency, Guidelines for Regulatory Application of Urban Airshed Model (EPA-450/4-91-013, 1991); SAI, Users Guide to the Variable Grid Urban Airshed Model (UAM-V) (Systems Applications International, San Rafael, CA, 1995); R. Pielke et al., Meteorol. Atmos. Phys. 49, 69 (1992)].
-
(1989)
Science
, vol.243
, pp. 745
-
-
Seinfeld, J.H.1
-
2
-
-
0024544076
-
-
National Academy of Sciences, Washington, DC
-
Photochemical production of tropospheric ozone has been studied extensively [J. H. Seinfeld, Science 243, 745 (1989); National Academy of Sciences, Rethinking the Ozone Problem in Urban and Regional Air Pollution (National Academy of Sciences, Washington, DC, 1991); U.S. Environmental Protection Agency, National Air Quality and Emissions Trends Report, 1995 (EPA454/R-96-005, 1996); B. J. Finlayson-Pitts and J. N. Pitts Jr., Science 276, 1045 (1997). The effect of aerosols on UV flux and photochemical ozone production near Earth's surface has generally been assumed to be small and negative, that is, the presence of aerosols reduces slightly the rate of smog formation [L. Zafonte, P. Rieger, J. Holmes, Environ. Sci. Technol. 11, 483 (1977); S. Liu, S. McKeen, S. Madronich, Geophys. Res. Lett. 18, 2265 (1991); Y. Lu and M. A. K. Khalil, Chemosphere 32, 739 (1996)]. Operation of many smog models, such as the Urban Airshed Models, is generally conducted without regard to the radiative effects of aerosols [U.S. Environmental Protection Agency, Guidelines for Regulatory Application of Urban Airshed Model (EPA-450/4-91-013, 1991); SAI, Users Guide to the Variable Grid Urban Airshed Model (UAM-V) (Systems Applications International, San Rafael, CA, 1995); R. Pielke et al., Meteorol. Atmos. Phys. 49, 69 (1992)].
-
(1991)
Rethinking the Ozone Problem in Urban and Regional Air Pollution
-
-
-
3
-
-
0024544076
-
-
EPA454/R-96-005
-
Photochemical production of tropospheric ozone has been studied extensively [J. H. Seinfeld, Science 243, 745 (1989); National Academy of Sciences, Rethinking the Ozone Problem in Urban and Regional Air Pollution (National Academy of Sciences, Washington, DC, 1991); U.S. Environmental Protection Agency, National Air Quality and Emissions Trends Report, 1995 (EPA454/R-96-005, 1996); B. J. Finlayson-Pitts and J. N. Pitts Jr., Science 276, 1045 (1997). The effect of aerosols on UV flux and photochemical ozone production near Earth's surface has generally been assumed to be small and negative, that is, the presence of aerosols reduces slightly the rate of smog formation [L. Zafonte, P. Rieger, J. Holmes, Environ. Sci. Technol. 11, 483 (1977); S. Liu, S. McKeen, S. Madronich, Geophys. Res. Lett. 18, 2265 (1991); Y. Lu and M. A. K. Khalil, Chemosphere 32, 739 (1996)]. Operation of many smog models, such as the Urban Airshed Models, is generally conducted without regard to the radiative effects of aerosols [U.S. Environmental Protection Agency, Guidelines for Regulatory Application of Urban Airshed Model (EPA-450/4-91-013, 1991); SAI, Users Guide to the Variable Grid Urban Airshed Model (UAM-V) (Systems Applications International, San Rafael, CA, 1995); R. Pielke et al., Meteorol. Atmos. Phys. 49, 69 (1992)].
-
(1996)
National Air Quality and Emissions Trends Report, 1995
-
-
-
4
-
-
0030618076
-
-
Photochemical production of tropospheric ozone has been studied extensively [J. H. Seinfeld, Science 243, 745 (1989); National Academy of Sciences, Rethinking the Ozone Problem in Urban and Regional Air Pollution (National Academy of Sciences, Washington, DC, 1991); U.S. Environmental Protection Agency, National Air Quality and Emissions Trends Report, 1995 (EPA454/R-96-005, 1996); B. J. Finlayson-Pitts and J. N. Pitts Jr., Science 276, 1045 (1997). The effect of aerosols on UV flux and photochemical ozone production near Earth's surface has generally been assumed to be small and negative, that is, the presence of aerosols reduces slightly the rate of smog formation [L. Zafonte, P. Rieger, J. Holmes, Environ. Sci. Technol. 11, 483 (1977); S. Liu, S. McKeen, S. Madronich, Geophys. Res. Lett. 18, 2265 (1991); Y. Lu and M. A. K. Khalil, Chemosphere 32, 739 (1996)]. Operation of many smog models, such as the Urban Airshed Models, is generally conducted without regard to the radiative effects of aerosols [U.S. Environmental Protection Agency, Guidelines for Regulatory Application of Urban Airshed Model (EPA-450/4-91-013, 1991); SAI, Users Guide to the Variable Grid Urban Airshed Model (UAM-V) (Systems Applications International, San Rafael, CA, 1995); R. Pielke et al., Meteorol. Atmos. Phys. 49, 69 (1992)].
-
(1997)
Science
, vol.276
, pp. 1045
-
-
Finlayson-Pitts, B.J.1
Pitts Jr., J.N.2
-
5
-
-
0017489249
-
-
Photochemical production of tropospheric ozone has been studied extensively [J. H. Seinfeld, Science 243, 745 (1989); National Academy of Sciences, Rethinking the Ozone Problem in Urban and Regional Air Pollution (National Academy of Sciences, Washington, DC, 1991); U.S. Environmental Protection Agency, National Air Quality and Emissions Trends Report, 1995 (EPA454/R-96-005, 1996); B. J. Finlayson-Pitts and J. N. Pitts Jr., Science 276, 1045 (1997). The effect of aerosols on UV flux and photochemical ozone production near Earth's surface has generally been assumed to be small and negative, that is, the presence of aerosols reduces slightly the rate of smog formation [L. Zafonte, P. Rieger, J. Holmes, Environ. Sci. Technol. 11, 483 (1977); S. Liu, S. McKeen, S. Madronich, Geophys. Res. Lett. 18, 2265 (1991); Y. Lu and M. A. K. Khalil, Chemosphere 32, 739 (1996)]. Operation of many smog models, such as the Urban Airshed Models, is generally conducted without regard to the radiative effects of aerosols [U.S. Environmental Protection Agency, Guidelines for Regulatory Application of Urban Airshed Model (EPA-450/4-91-013, 1991); SAI, Users Guide to the Variable Grid Urban Airshed Model (UAM-V) (Systems Applications International, San Rafael, CA, 1995); R. Pielke et al., Meteorol. Atmos. Phys. 49, 69 (1992)].
-
(1977)
Environ. Sci. Technol.
, vol.11
, pp. 483
-
-
Zafonte, L.1
Rieger, P.2
Holmes, J.3
-
6
-
-
0026299543
-
-
Photochemical production of tropospheric ozone has been studied extensively [J. H. Seinfeld, Science 243, 745 (1989); National Academy of Sciences, Rethinking the Ozone Problem in Urban and Regional Air Pollution (National Academy of Sciences, Washington, DC, 1991); U.S. Environmental Protection Agency, National Air Quality and Emissions Trends Report, 1995 (EPA454/R-96-005, 1996); B. J. Finlayson-Pitts and J. N. Pitts Jr., Science 276, 1045 (1997). The effect of aerosols on UV flux and photochemical ozone production near Earth's surface has generally been assumed to be small and negative, that is, the presence of aerosols reduces slightly the rate of smog formation [L. Zafonte, P. Rieger, J. Holmes, Environ. Sci. Technol. 11, 483 (1977); S. Liu, S. McKeen, S. Madronich, Geophys. Res. Lett. 18, 2265 (1991); Y. Lu and M. A. K. Khalil, Chemosphere 32, 739 (1996)]. Operation of many smog models, such as the Urban Airshed Models, is generally conducted without regard to the radiative effects of aerosols [U.S. Environmental Protection Agency, Guidelines for Regulatory Application of Urban Airshed Model (EPA-450/4-91-013, 1991); SAI, Users Guide to the Variable Grid Urban Airshed Model (UAM-V) (Systems Applications International, San Rafael, CA, 1995); R. Pielke et al., Meteorol. Atmos. Phys. 49, 69 (1992)].
-
(1991)
Geophys. Res. Lett.
, vol.18
, pp. 2265
-
-
Liu, S.1
McKeen, S.2
Madronich, S.3
-
7
-
-
0029668150
-
-
Photochemical production of tropospheric ozone has been studied extensively [J. H. Seinfeld, Science 243, 745 (1989); National Academy of Sciences, Rethinking the Ozone Problem in Urban and Regional Air Pollution (National Academy of Sciences, Washington, DC, 1991); U.S. Environmental Protection Agency, National Air Quality and Emissions Trends Report, 1995 (EPA454/R-96-005, 1996); B. J. Finlayson-Pitts and J. N. Pitts Jr., Science 276, 1045 (1997). The effect of aerosols on UV flux and photochemical ozone production near Earth's surface has generally been assumed to be small and negative, that is, the presence of aerosols reduces slightly the rate of smog formation [L. Zafonte, P. Rieger, J. Holmes, Environ. Sci. Technol. 11, 483 (1977); S. Liu, S. McKeen, S. Madronich, Geophys. Res. Lett. 18, 2265 (1991); Y. Lu and M. A. K. Khalil, Chemosphere 32, 739 (1996)]. Operation of many smog models, such as the Urban Airshed Models, is generally conducted without regard to the radiative effects of aerosols [U.S. Environmental Protection Agency, Guidelines for Regulatory Application of Urban Airshed Model (EPA-450/4-91-013, 1991); SAI, Users Guide to the Variable Grid Urban Airshed Model (UAM-V) (Systems Applications International, San Rafael, CA, 1995); R. Pielke et al., Meteorol. Atmos. Phys. 49, 69 (1992)].
-
(1996)
Chemosphere
, vol.32
, pp. 739
-
-
Lu, Y.1
Khalil, M.A.K.2
-
8
-
-
0024544076
-
-
EPA-450/4-91-013
-
Photochemical production of tropospheric ozone has been studied extensively [J. H. Seinfeld, Science 243, 745 (1989); National Academy of Sciences, Rethinking the Ozone Problem in Urban and Regional Air Pollution (National Academy of Sciences, Washington, DC, 1991); U.S. Environmental Protection Agency, National Air Quality and Emissions Trends Report, 1995 (EPA454/R-96-005, 1996); B. J. Finlayson-Pitts and J. N. Pitts Jr., Science 276, 1045 (1997). The effect of aerosols on UV flux and photochemical ozone production near Earth's surface has generally been assumed to be small and negative, that is, the presence of aerosols reduces slightly the rate of smog formation [L. Zafonte, P. Rieger, J. Holmes, Environ. Sci. Technol. 11, 483 (1977); S. Liu, S. McKeen, S. Madronich, Geophys. Res. Lett. 18, 2265 (1991); Y. Lu and M. A. K. Khalil, Chemosphere 32, 739 (1996)]. Operation of many smog models, such as the Urban Airshed Models, is generally conducted without regard to the radiative effects of aerosols [U.S. Environmental Protection Agency, Guidelines for Regulatory Application of Urban Airshed Model (EPA-450/4-91-013, 1991); SAI, Users Guide to the Variable Grid Urban Airshed Model (UAM-V) (Systems Applications International, San Rafael, CA, 1995); R. Pielke et al., Meteorol. Atmos. Phys. 49, 69 (1992)].
-
(1991)
Guidelines for Regulatory Application of Urban Airshed Model
-
-
-
9
-
-
0024544076
-
-
Systems Applications International, San Rafael, CA
-
Photochemical production of tropospheric ozone has been studied extensively [J. H. Seinfeld, Science 243, 745 (1989); National Academy of Sciences, Rethinking the Ozone Problem in Urban and Regional Air Pollution (National Academy of Sciences, Washington, DC, 1991); U.S. Environmental Protection Agency, National Air Quality and Emissions Trends Report, 1995 (EPA454/R-96-005, 1996); B. J. Finlayson-Pitts and J. N. Pitts Jr., Science 276, 1045 (1997). The effect of aerosols on UV flux and photochemical ozone production near Earth's surface has generally been assumed to be small and negative, that is, the presence of aerosols reduces slightly the rate of smog formation [L. Zafonte, P. Rieger, J. Holmes, Environ. Sci. Technol. 11, 483 (1977); S. Liu, S. McKeen, S. Madronich, Geophys. Res. Lett. 18, 2265 (1991); Y. Lu and M. A. K. Khalil, Chemosphere 32, 739 (1996)]. Operation of many smog models, such as the Urban Airshed Models, is generally conducted without regard to the radiative effects of aerosols [U.S. Environmental Protection Agency, Guidelines for Regulatory Application of Urban Airshed Model (EPA-450/4-91-013, 1991); SAI, Users Guide to the Variable Grid Urban Airshed Model (UAM-V) (Systems Applications International, San Rafael, CA, 1995); R. Pielke et al., Meteorol. Atmos. Phys. 49, 69 (1992)].
-
(1995)
Users Guide to the Variable Grid Urban Airshed Model (UAM-V)
-
-
-
10
-
-
34249834317
-
-
Photochemical production of tropospheric ozone has been studied extensively [J. H. Seinfeld, Science 243, 745 (1989); National Academy of Sciences, Rethinking the Ozone Problem in Urban and Regional Air Pollution (National Academy of Sciences, Washington, DC, 1991); U.S. Environmental Protection Agency, National Air Quality and Emissions Trends Report, 1995 (EPA454/R-96-005, 1996); B. J. Finlayson-Pitts and J. N. Pitts Jr., Science 276, 1045 (1997). The effect of aerosols on UV flux and photochemical ozone production near Earth's surface has generally been assumed to be small and negative, that is, the presence of aerosols reduces slightly the rate of smog formation [L. Zafonte, P. Rieger, J. Holmes, Environ. Sci. Technol. 11, 483 (1977); S. Liu, S. McKeen, S. Madronich, Geophys. Res. Lett. 18, 2265 (1991); Y. Lu and M. A. K. Khalil, Chemosphere 32, 739 (1996)]. Operation of many smog models, such as the Urban Airshed Models, is generally conducted without regard to the radiative effects of aerosols [U.S. Environmental Protection Agency, Guidelines for Regulatory Application of Urban Airshed Model (EPA-450/4-91-013, 1991); SAI, Users Guide to the Variable Grid Urban Airshed Model (UAM-V) (Systems Applications International, San Rafael, CA, 1995); R. Pielke et al., Meteorol. Atmos. Phys. 49, 69 (1992)].
-
(1992)
Meteorol. Atmos. Phys.
, vol.49
, pp. 69
-
-
Pielke, R.1
-
11
-
-
0017080121
-
-
Photochemical reactions progress at a rate that depends on the intensity of radiation. For any particular species, the photolysis rate coefficient can be calculated by integrating the product of the actinic flux, the quantum yield, and the absorption cross section with respect to wavelength. This coefficient can also be measured directly with a chemical actinometer. See, for example, J. Peterson and K. Demerjian, Atmos. Environ. 10, 459 (1976); J. Peterson, ibid. 11, 689 (1977); R. Dickerson, D. Stedman, A. Delany, J. Geophys. Res. 87, 4933 (1982); T. Blackburn, S. Bairai, D. Stedman, ibid. 97, 10109 (1992); A. Ruggaber, R. Dlugi, T. Nakajima, J. Atmos. Chem. 18, 171 (1994); C. Blindauer, V. Rozanov, J. Burrows, ibid. 24, 1 (1996).
-
(1976)
Atmos. Environ.
, vol.10
, pp. 459
-
-
Peterson, J.1
Demerjian, K.2
-
12
-
-
0017757002
-
-
Photochemical reactions progress at a rate that depends on the intensity of radiation. For any particular species, the photolysis rate coefficient can be calculated by integrating the product of the actinic flux, the quantum yield, and the absorption cross section with respect to wavelength. This coefficient can also be measured directly with a chemical actinometer. See, for example, J. Peterson and K. Demerjian, Atmos. Environ. 10, 459 (1976); J. Peterson, ibid. 11, 689 (1977); R. Dickerson, D. Stedman, A. Delany, J. Geophys. Res. 87, 4933 (1982); T. Blackburn, S. Bairai, D. Stedman, ibid. 97, 10109 (1992); A. Ruggaber, R. Dlugi, T. Nakajima, J. Atmos. Chem. 18, 171 (1994); C. Blindauer, V. Rozanov, J. Burrows, ibid. 24, 1 (1996).
-
(1977)
Atmos. Environ.
, vol.11
, pp. 689
-
-
Peterson, J.1
-
13
-
-
0020401378
-
-
Photochemical reactions progress at a rate that depends on the intensity of radiation. For any particular species, the photolysis rate coefficient can be calculated by integrating the product of the actinic flux, the quantum yield, and the absorption cross section with respect to wavelength. This coefficient can also be measured directly with a chemical actinometer. See, for example, J. Peterson and K. Demerjian, Atmos. Environ. 10, 459 (1976); J. Peterson, ibid. 11, 689 (1977); R. Dickerson, D. Stedman, A. Delany, J. Geophys. Res. 87, 4933 (1982); T. Blackburn, S. Bairai, D. Stedman, ibid. 97, 10109 (1992); A. Ruggaber, R. Dlugi, T. Nakajima, J. Atmos. Chem. 18, 171 (1994); C. Blindauer, V. Rozanov, J. Burrows, ibid. 24, 1 (1996).
-
(1982)
J. Geophys. Res.
, vol.87
, pp. 4933
-
-
Dickerson, R.1
Stedman, D.2
Delany, A.3
-
14
-
-
0027086759
-
-
Photochemical reactions progress at a rate that depends on the intensity of radiation. For any particular species, the photolysis rate coefficient can be calculated by integrating the product of the actinic flux, the quantum yield, and the absorption cross section with respect to wavelength. This coefficient can also be measured directly with a chemical actinometer. See, for example, J. Peterson and K. Demerjian, Atmos. Environ. 10, 459 (1976); J. Peterson, ibid. 11, 689 (1977); R. Dickerson, D. Stedman, A. Delany, J. Geophys. Res. 87, 4933 (1982); T. Blackburn, S. Bairai, D. Stedman, ibid. 97, 10109 (1992); A. Ruggaber, R. Dlugi, T. Nakajima, J. Atmos. Chem. 18, 171 (1994); C. Blindauer, V. Rozanov, J. Burrows, ibid. 24, 1 (1996).
-
(1992)
J. Geophys. Res.
, vol.97
, pp. 10109
-
-
Blackburn, T.1
Bairai, S.2
Stedman, D.3
-
15
-
-
0028159536
-
-
Photochemical reactions progress at a rate that depends on the intensity of radiation. For any particular species, the photolysis rate coefficient can be calculated by integrating the product of the actinic flux, the quantum yield, and the absorption cross section with respect to wavelength. This coefficient can also be measured directly with a chemical actinometer. See, for example, J. Peterson and K. Demerjian, Atmos. Environ. 10, 459 (1976); J. Peterson, ibid. 11, 689 (1977); R. Dickerson, D. Stedman, A. Delany, J. Geophys. Res. 87, 4933 (1982); T. Blackburn, S. Bairai, D. Stedman, ibid. 97, 10109 (1992); A. Ruggaber, R. Dlugi, T. Nakajima, J. Atmos. Chem. 18, 171 (1994); C. Blindauer, V. Rozanov, J. Burrows, ibid. 24, 1 (1996).
-
(1994)
J. Atmos. Chem.
, vol.18
, pp. 171
-
-
Ruggaber, A.1
Dlugi, R.2
Nakajima, T.3
-
16
-
-
0029663017
-
-
Photochemical reactions progress at a rate that depends on the intensity of radiation. For any particular species, the photolysis rate coefficient can be calculated by integrating the product of the actinic flux, the quantum yield, and the absorption cross section with respect to wavelength. This coefficient can also be measured directly with a chemical actinometer. See, for example, J. Peterson and K. Demerjian, Atmos. Environ. 10, 459 (1976); J. Peterson, ibid. 11, 689 (1977); R. Dickerson, D. Stedman, A. Delany, J. Geophys. Res. 87, 4933 (1982); T. Blackburn, S. Bairai, D. Stedman, ibid. 97, 10109 (1992); A. Ruggaber, R. Dlugi, T. Nakajima, J. Atmos. Chem. 18, 171 (1994); C. Blindauer, V. Rozanov, J. Burrows, ibid. 24, 1 (1996).
-
(1996)
J. Atmos. Chem.
, vol.24
, pp. 1
-
-
Blindauer, C.1
Rozanov, V.2
Burrows, J.3
-
18
-
-
0026488636
-
-
o is the same radiance under an aerosol-free atmosphere. When τ equals or exceeds unity, the atmosphere is said to be optically thick [R. J. Charlson et al., Science 255, 423 (1992); J. T. Kiehl and B. P. Briegleb, ibid. 260, 311 (1993); J. T. Houghton et al., Climate Change 1995: The Science of Climate Change (Cambridge Univ. Press, Cambridge, 1996)].
-
(1992)
Science
, vol.255
, pp. 423
-
-
Charlson, R.J.1
-
19
-
-
0027580056
-
-
o is the same radiance under an aerosol-free atmosphere. When τ equals or exceeds unity, the atmosphere is said to be optically thick [R. J. Charlson et al., Science 255, 423 (1992); J. T. Kiehl and B. P. Briegleb, ibid. 260, 311 (1993); J. T. Houghton et al., Climate Change 1995: The Science of Climate Change (Cambridge Univ. Press, Cambridge, 1996)].
-
(1993)
Science
, vol.260
, pp. 311
-
-
Kiehl, J.T.1
Briegleb, B.P.2
-
20
-
-
0026488636
-
-
Cambridge Univ. Press, Cambridge
-
o is the same radiance under an aerosol-free atmosphere. When τ equals or exceeds unity, the atmosphere is said to be optically thick [R. J. Charlson et al., Science 255, 423 (1992); J. T. Kiehl and B. P. Briegleb, ibid. 260, 311 (1993); J. T. Houghton et al., Climate Change 1995: The Science of Climate Change (Cambridge Univ. Press, Cambridge, 1996)].
-
(1996)
Climate Change 1995: The Science of Climate Change
-
-
Houghton, J.T.1
-
23
-
-
0029507062
-
-
The photolysis rate coefficients presented here were determined with an instrument described by P. Kelley, R. Dickerson, W. Luke, and G. Kok [Geophys. Res. Lett. 22 (no. 19), 2621 (1995)]. Most natural surfaces (except snow) reflect 8% or less of incident UV irradiance. For these measurements, a black surface was placed below the actinometer to ensure a constant and known local albedo, ensuring that radiation was measured only from the downwelling 2 π steradians. This device has an absolute uncertainty of about 7% at the 95% confidence level for zenith angles less than 60°; the precision is a few percent.
-
(1995)
Geophys. Res. Lett.
, vol.22
, Issue.19
, pp. 2621
-
-
Kelley, P.1
Dickerson, R.2
Luke, W.3
Kok, G.4
-
24
-
-
1842333727
-
-
thesis, University of Maryland, College Park, MD
-
K. L. Civerolo, thesis, University of Maryland, College Park, MD (1996); W. Ryan, B. Doddridge, R. Dickerson, K. Hallock, J. Air Waste Manage. Assoc., in press.
-
(1996)
-
-
Civerolo, K.L.1
-
25
-
-
1842330726
-
-
in press
-
K. L. Civerolo, thesis, University of Maryland, College Park, MD (1996); W. Ryan, B. Doddridge, R. Dickerson, K. Hallock, J. Air Waste Manage. Assoc., in press.
-
J. Air Waste Manage. Assoc.
-
-
Ryan, W.1
Doddridge, B.2
Dickerson, R.3
Hallock, K.4
-
26
-
-
0028569987
-
-
The instruments monitor direct solar radiation and sky radiance at the almucanter (on the celestial circle parallel to the horizon and at the same zenith angle as the sun) and principal plane (the plane perpendicular to the horizon through the apparent position of the sun) [Y. Kaufman et al., J. Geophys. Res. 99, 10341 (1994); T. Nakajima et al., Appl. Opt. 35, 2672 (1996); B. N. Holben et al., Sixth International Symposium of Physical Measurements and Signatures in Remote Sensing, Val D'Isere, France, 17 to 21 January 1994 (Center National d'Etudes Spatiales, Toulouse, France, 1997), pp. 75-83; L. Remer, S. Gasso, D. Hegg, Y. Kaufman, B. Holben, J. Geophys. Res., 102, 16849 (1997).
-
(1994)
J. Geophys. Res.
, vol.99
, pp. 10341
-
-
Kaufman, Y.1
-
27
-
-
6244260108
-
-
The instruments monitor direct solar radiation and sky radiance at the almucanter (on the celestial circle parallel to the horizon and at the same zenith angle as the sun) and principal plane (the plane perpendicular to the horizon through the apparent position of the sun) [Y. Kaufman et al., J. Geophys. Res. 99, 10341 (1994); T. Nakajima et al., Appl. Opt. 35, 2672 (1996); B. N. Holben et al., Sixth International Symposium of Physical Measurements and Signatures in Remote Sensing, Val D'Isere, France, 17 to 21 January 1994 (Center National d'Etudes Spatiales, Toulouse, France, 1997), pp. 75-83; L. Remer, S. Gasso, D. Hegg, Y. Kaufman, B. Holben, J. Geophys. Res., 102, 16849 (1997).
-
(1996)
Appl. Opt.
, vol.35
, pp. 2672
-
-
Nakajima, T.1
-
28
-
-
0028569987
-
-
Val D'Isere, France, 17 to 21 January 1994 Center National d'Etudes Spatiales, Toulouse, France
-
The instruments monitor direct solar radiation and sky radiance at the almucanter (on the celestial circle parallel to the horizon and at the same zenith angle as the sun) and principal plane (the plane perpendicular to the horizon through the apparent position of the sun) [Y. Kaufman et al., J. Geophys. Res. 99, 10341 (1994); T. Nakajima et al., Appl. Opt. 35, 2672 (1996); B. N. Holben et al., Sixth International Symposium of Physical Measurements and Signatures in Remote Sensing, Val D'Isere, France, 17 to 21 January 1994 (Center National d'Etudes Spatiales, Toulouse, France, 1997), pp. 75-83; L. Remer, S. Gasso, D. Hegg, Y. Kaufman, B. Holben, J. Geophys. Res., 102, 16849 (1997).
-
(1997)
Sixth International Symposium of Physical Measurements and Signatures in Remote Sensing
, pp. 75-83
-
-
Holben, B.N.1
-
29
-
-
0031396071
-
-
The instruments monitor direct solar radiation and sky radiance at the almucanter (on the celestial circle parallel to the horizon and at the same zenith angle as the sun) and principal plane (the plane perpendicular to the horizon through the apparent position of the sun) [Y. Kaufman et al., J. Geophys. Res. 99, 10341 (1994); T. Nakajima et al., Appl. Opt. 35, 2672 (1996); B. N. Holben et al., Sixth International Symposium of Physical Measurements and Signatures in Remote Sensing, Val D'Isere, France, 17 to 21 January 1994 (Center National d'Etudes Spatiales, Toulouse, France, 1997), pp. 75-83; L. Remer, S. Gasso, D. Hegg, Y. Kaufman, B. Holben, J. Geophys. Res., 102, 16849 (1997).
-
(1997)
J. Geophys. Res.
, vol.102
, pp. 16849
-
-
Remer, L.1
Gasso, S.2
Hegg, D.3
Kaufman, Y.4
Holben, B.5
-
30
-
-
0014638770
-
-
E. Flowers, R. McCormick, K. Kurfis, J. Appl. Meteorol. 8, 955 (1969); J. Peterson, E. Flowers, G. J. Berri, C. L. Reynolds, J. H. Rudisill, ibid. 20, 229 (1981); R. B. Husar, J. M. Holloway, D. E. Patterson, W. E. Wilson, Atmos. Environ. 15, 1919 (1981); Y. Kaufman and R. S. Fraser, J. Appl. Meteorol. 22, 1694 (1983); R. B. Husar and W. E. Wilson, Environ. Sci. Technol. 27, 12 (1993).
-
(1969)
J. Appl. Meteorol.
, vol.8
, pp. 955
-
-
Flowers, E.1
McCormick, R.2
Kurfis, K.3
-
31
-
-
0019685855
-
-
E. Flowers, R. McCormick, K. Kurfis, J. Appl. Meteorol. 8, 955 (1969); J. Peterson, E. Flowers, G. J. Berri, C. L. Reynolds, J. H. Rudisill, ibid. 20, 229 (1981); R. B. Husar, J. M. Holloway, D. E. Patterson, W. E. Wilson, Atmos. Environ. 15, 1919 (1981); Y. Kaufman and R. S. Fraser, J. Appl. Meteorol. 22, 1694 (1983); R. B. Husar and W. E. Wilson, Environ. Sci. Technol. 27, 12 (1993).
-
(1981)
J. Appl. Meteorol.
, vol.20
, pp. 229
-
-
Peterson, J.1
Flowers, E.2
Berri, G.J.3
Reynolds, C.L.4
Rudisill, J.H.5
-
32
-
-
0019853605
-
-
E. Flowers, R. McCormick, K. Kurfis, J. Appl. Meteorol. 8, 955 (1969); J. Peterson, E. Flowers, G. J. Berri, C. L. Reynolds, J. H. Rudisill, ibid. 20, 229 (1981); R. B. Husar, J. M. Holloway, D. E. Patterson, W. E. Wilson, Atmos. Environ. 15, 1919 (1981); Y. Kaufman and R. S. Fraser, J. Appl. Meteorol. 22, 1694 (1983); R. B. Husar and W. E. Wilson, Environ. Sci. Technol. 27, 12 (1993).
-
(1981)
Atmos. Environ.
, vol.15
, pp. 1919
-
-
Husar, R.B.1
Holloway, J.M.2
Patterson, D.E.3
Wilson, W.E.4
-
33
-
-
0020841490
-
-
E. Flowers, R. McCormick, K. Kurfis, J. Appl. Meteorol. 8, 955 (1969); J. Peterson, E. Flowers, G. J. Berri, C. L. Reynolds, J. H. Rudisill, ibid. 20, 229 (1981); R. B. Husar, J. M. Holloway, D. E. Patterson, W. E. Wilson, Atmos. Environ. 15, 1919 (1981); Y. Kaufman and R. S. Fraser, J. Appl. Meteorol. 22, 1694 (1983); R. B. Husar and W. E. Wilson, Environ. Sci. Technol. 27, 12 (1993).
-
(1983)
J. Appl. Meteorol.
, vol.22
, pp. 1694
-
-
Kaufman, Y.1
Fraser, R.S.2
-
34
-
-
0027334962
-
-
E. Flowers, R. McCormick, K. Kurfis, J. Appl. Meteorol. 8, 955 (1969); J. Peterson, E. Flowers, G. J. Berri, C. L. Reynolds, J. H. Rudisill, ibid. 20, 229 (1981); R. B. Husar, J. M. Holloway, D. E. Patterson, W. E. Wilson, Atmos. Environ. 15, 1919 (1981); Y. Kaufman and R. S. Fraser, J. Appl. Meteorol. 22, 1694 (1983); R. B. Husar and W. E. Wilson, Environ. Sci. Technol. 27, 12 (1993).
-
(1993)
Environ. Sci. Technol.
, vol.27
, pp. 12
-
-
Husar, R.B.1
Wilson, W.E.2
-
35
-
-
0030620559
-
-
x and NMHC emissions may not lead to proportionate reductions in particulate loading [J. R. Odum, T. P. W. Jungkamp, R. J. Griffin, R. C. Flagan, J. H. Seinfeld, Science 276, 96 (1997); Z. Meng, D. Dabdub, J. H. Seinfeld, ibid. 277, 116 (1997)].
-
(1997)
Science
, vol.276
, pp. 96
-
-
Odum, J.R.1
Jungkamp, T.P.W.2
Griffin, R.J.3
Flagan, R.C.4
Seinfeld, J.H.5
-
36
-
-
0030774936
-
-
x and NMHC emissions may not lead to proportionate reductions in particulate loading [J. R. Odum, T. P. W. Jungkamp, R. J. Griffin, R. C. Flagan, J. H. Seinfeld, Science 276, 96 (1997); Z. Meng, D. Dabdub, J. H. Seinfeld, ibid. 277, 116 (1997)].
-
(1997)
Science
, vol.277
, pp. 116
-
-
Meng, Z.1
Dabdub, D.2
Seinfeld, J.H.3
-
38
-
-
0022849652
-
-
Y. Kaufman, T. Brakke, E. Eloranta, J. Atmos. Sci. 43 (no. 11), 1135 (1986).
-
(1986)
J. Atmos. Sci.
, vol.43
, Issue.11
, pp. 1135
-
-
Kaufman, Y.1
Brakke, T.2
Eloranta, E.3
-
40
-
-
84966148288
-
-
K. Stamnes, S.-C. Tsay, W. Wiscombe, K. Jayaweera, Appl. Opt. 27 (no. 12), 2502 (1988).
-
(1988)
Appl. Opt.
, vol.27
, Issue.12
, pp. 2502
-
-
Stamnes, K.1
Tsay, S.-C.2
Wiscombe, W.3
Jayaweera, K.4
-
42
-
-
1842292600
-
-
thesis, University of Maryland, College Park, MD
-
S. Kondragunta, thesis, University of Maryland, College Park, MD (1997).
-
(1997)
-
-
Kondragunta, S.1
-
43
-
-
1842411720
-
-
J. Lelieveld and P. J. Crutzen, Nature 343, 277 (1990); F. Dentener and P. Crutzen, J. Geophys. Res. 98 (no. 4), 7149 (1993); C. Walcek, H.-H. Yuan, W. Stockwell, Atmos. Environ. 31 (no. 8), 1221 (1997); J. Liang and D. Jacob, J. Geophys. Res. 102 (no. 5), 5993 (1997); M. Andreae and P. Crutzen, Science 276, 1052 (1997); A. R. Ravishankara, ibid., p. 1058.
-
(1990)
Nature
, vol.343
, pp. 277
-
-
Lelieveld, J.1
Crutzen, P.J.2
-
44
-
-
0027444140
-
-
J. Lelieveld and P. J. Crutzen, Nature 343, 277 (1990); F. Dentener and P. Crutzen, J. Geophys. Res. 98 (no. 4), 7149 (1993); C. Walcek, H.-H. Yuan, W. Stockwell, Atmos. Environ. 31 (no. 8), 1221 (1997); J. Liang and D. Jacob, J. Geophys. Res. 102 (no. 5), 5993 (1997); M. Andreae and P. Crutzen, Science 276, 1052 (1997); A. R. Ravishankara, ibid., p. 1058.
-
(1993)
J. Geophys. Res.
, vol.98
, Issue.4
, pp. 7149
-
-
Dentener, F.1
Crutzen, P.2
-
45
-
-
0031107056
-
-
J. Lelieveld and P. J. Crutzen, Nature 343, 277 (1990); F. Dentener and P. Crutzen, J. Geophys. Res. 98 (no. 4), 7149 (1993); C. Walcek, H.-H. Yuan, W. Stockwell, Atmos. Environ. 31 (no. 8), 1221 (1997); J. Liang and D. Jacob, J. Geophys. Res. 102 (no. 5), 5993 (1997); M. Andreae and P. Crutzen, Science 276, 1052 (1997); A. R. Ravishankara, ibid., p. 1058.
-
(1997)
Atmos. Environ.
, vol.31
, Issue.8
, pp. 1221
-
-
Walcek, C.1
Yuan, H.-H.2
Stockwell, W.3
-
46
-
-
0345917121
-
-
J. Lelieveld and P. J. Crutzen, Nature 343, 277 (1990); F. Dentener and P. Crutzen, J. Geophys. Res. 98 (no. 4), 7149 (1993); C. Walcek, H.-H. Yuan, W. Stockwell, Atmos. Environ. 31 (no. 8), 1221 (1997); J. Liang and D. Jacob, J. Geophys. Res. 102 (no. 5), 5993 (1997); M. Andreae and P. Crutzen, Science 276, 1052 (1997); A. R. Ravishankara, ibid., p. 1058.
-
(1997)
J. Geophys. Res.
, vol.102
, Issue.5
, pp. 5993
-
-
Liang, J.1
Jacob, D.2
-
47
-
-
0030618083
-
-
J. Lelieveld and P. J. Crutzen, Nature 343, 277 (1990); F. Dentener and P. Crutzen, J. Geophys. Res. 98 (no. 4), 7149 (1993); C. Walcek, H.-H. Yuan, W. Stockwell, Atmos. Environ. 31 (no. 8), 1221 (1997); J. Liang and D. Jacob, J. Geophys. Res. 102 (no. 5), 5993 (1997); M. Andreae and P. Crutzen, Science 276, 1052 (1997); A. R. Ravishankara, ibid., p. 1058.
-
(1997)
Science
, vol.276
, pp. 1052
-
-
Andreae, M.1
Crutzen, P.2
-
48
-
-
1842416399
-
-
J. Lelieveld and P. J. Crutzen, Nature 343, 277 (1990); F. Dentener and P. Crutzen, J. Geophys. Res. 98 (no. 4), 7149 (1993); C. Walcek, H.-H. Yuan, W. Stockwell, Atmos. Environ. 31 (no. 8), 1221 (1997); J. Liang and D. Jacob, J. Geophys. Res. 102 (no. 5), 5993 (1997); M. Andreae and P. Crutzen, Science 276, 1052 (1997); A. R. Ravishankara, ibid., p. 1058.
-
Science
, pp. 1058
-
-
Ravishankara, A.R.1
-
49
-
-
0030234133
-
-
D. Hauglustaine, B. Ridley, S. Solomon, P. Hess, S. Madronich, Geophys. Res. Lett. 23, 2609 (1996); D. Lary et al., J. Geophys. Res. 102, 3671 (1997).
-
(1996)
Geophys. Res. Lett.
, vol.23
, pp. 2609
-
-
Hauglustaine, D.1
Ridley, B.2
Solomon, S.3
Hess, P.4
Madronich, S.5
-
50
-
-
0031434733
-
-
D. Hauglustaine, B. Ridley, S. Solomon, P. Hess, S. Madronich, Geophys. Res. Lett. 23, 2609 (1996); D. Lary et al., J. Geophys. Res. 102, 3671 (1997).
-
(1997)
J. Geophys. Res.
, vol.102
, pp. 3671
-
-
Lary, D.1
-
51
-
-
0029750785
-
-
M. Naja and S. Lal, Geophys. Res. Lett. 23, 81 (1996); C. Varshney and M. Aggarwal, Atmos. Environ. 26, 291 (1992); J. Herman et al., J. Geophys. Res. 102, 16911 (1997); K. Rhoads et al., ibid., p. 18981.
-
(1996)
Geophys. Res. Lett.
, vol.23
, pp. 81
-
-
Naja, M.1
Lal, S.2
-
52
-
-
0027039867
-
-
M. Naja and S. Lal, Geophys. Res. Lett. 23, 81 (1996); C. Varshney and M. Aggarwal, Atmos. Environ. 26, 291 (1992); J. Herman et al., J. Geophys. Res. 102, 16911 (1997); K. Rhoads et al., ibid., p. 18981.
-
(1992)
Atmos. Environ.
, vol.26
, pp. 291
-
-
Varshney, C.1
Aggarwal, M.2
-
53
-
-
0000170342
-
-
M. Naja and S. Lal, Geophys. Res. Lett. 23, 81 (1996); C. Varshney and M. Aggarwal, Atmos. Environ. 26, 291 (1992); J. Herman et al., J. Geophys. Res. 102, 16911 (1997); K. Rhoads et al., ibid., p. 18981.
-
(1997)
J. Geophys. Res.
, vol.102
, pp. 16911
-
-
Herman, J.1
-
54
-
-
0029750785
-
-
M. Naja and S. Lal, Geophys. Res. Lett. 23, 81 (1996); C. Varshney and M. Aggarwal, Atmos. Environ. 26, 291 (1992); J. Herman et al., J. Geophys. Res. 102, 16911 (1997); K. Rhoads et al., ibid., p. 18981.
-
J. Geophys. Res.
, pp. 18981
-
-
Rhoads, K.1
-
55
-
-
1842330725
-
-
note
-
We thank P. Crutzen, Y. Kaufman, I. Laszlo, and W. Ryan for helpful comments. Supported by Electric Power Research Institute through the NARSTO-Northeast Program, by the National Science Foundation-funded Center for Clouds, Chemistry, and Climate, and by NASA EOS Interdisciplinary Science Investigation.
-
-
-
|