메뉴 건너뛰기




Volumn 278, Issue 5339, 1997, Pages 827-830

The impact of aerosols on solar ultraviolet radiation and photochemical smog

Author keywords

[No Author keywords available]

Indexed keywords

HYDROCARBON; OZONE; SULFUR;

EID: 0030685149     PISSN: 00368075     EISSN: None     Source Type: Journal    
DOI: 10.1126/science.278.5339.827     Document Type: Article
Times cited : (512)

References (55)
  • 1
    • 0024544076 scopus 로고    scopus 로고
    • Photochemical production of tropospheric ozone has been studied extensively [J. H. Seinfeld, Science 243, 745 (1989); National Academy of Sciences, Rethinking the Ozone Problem in Urban and Regional Air Pollution (National Academy of Sciences, Washington, DC, 1991); U.S. Environmental Protection Agency, National Air Quality and Emissions Trends Report, 1995 (EPA454/R-96-005, 1996); B. J. Finlayson-Pitts and J. N. Pitts Jr., Science 276, 1045 (1997). The effect of aerosols on UV flux and photochemical ozone production near Earth's surface has generally been assumed to be small and negative, that is, the presence of aerosols reduces slightly the rate of smog formation [L. Zafonte, P. Rieger, J. Holmes, Environ. Sci. Technol. 11, 483 (1977); S. Liu, S. McKeen, S. Madronich, Geophys. Res. Lett. 18, 2265 (1991); Y. Lu and M. A. K. Khalil, Chemosphere 32, 739 (1996)]. Operation of many smog models, such as the Urban Airshed Models, is generally conducted without regard to the radiative effects of aerosols [U.S. Environmental Protection Agency, Guidelines for Regulatory Application of Urban Airshed Model (EPA-450/4-91-013, 1991); SAI, Users Guide to the Variable Grid Urban Airshed Model (UAM-V) (Systems Applications International, San Rafael, CA, 1995); R. Pielke et al., Meteorol. Atmos. Phys. 49, 69 (1992)].
    • (1989) Science , vol.243 , pp. 745
    • Seinfeld, J.H.1
  • 2
    • 0024544076 scopus 로고    scopus 로고
    • National Academy of Sciences, Washington, DC
    • Photochemical production of tropospheric ozone has been studied extensively [J. H. Seinfeld, Science 243, 745 (1989); National Academy of Sciences, Rethinking the Ozone Problem in Urban and Regional Air Pollution (National Academy of Sciences, Washington, DC, 1991); U.S. Environmental Protection Agency, National Air Quality and Emissions Trends Report, 1995 (EPA454/R-96-005, 1996); B. J. Finlayson-Pitts and J. N. Pitts Jr., Science 276, 1045 (1997). The effect of aerosols on UV flux and photochemical ozone production near Earth's surface has generally been assumed to be small and negative, that is, the presence of aerosols reduces slightly the rate of smog formation [L. Zafonte, P. Rieger, J. Holmes, Environ. Sci. Technol. 11, 483 (1977); S. Liu, S. McKeen, S. Madronich, Geophys. Res. Lett. 18, 2265 (1991); Y. Lu and M. A. K. Khalil, Chemosphere 32, 739 (1996)]. Operation of many smog models, such as the Urban Airshed Models, is generally conducted without regard to the radiative effects of aerosols [U.S. Environmental Protection Agency, Guidelines for Regulatory Application of Urban Airshed Model (EPA-450/4-91-013, 1991); SAI, Users Guide to the Variable Grid Urban Airshed Model (UAM-V) (Systems Applications International, San Rafael, CA, 1995); R. Pielke et al., Meteorol. Atmos. Phys. 49, 69 (1992)].
    • (1991) Rethinking the Ozone Problem in Urban and Regional Air Pollution
  • 3
    • 0024544076 scopus 로고    scopus 로고
    • EPA454/R-96-005
    • Photochemical production of tropospheric ozone has been studied extensively [J. H. Seinfeld, Science 243, 745 (1989); National Academy of Sciences, Rethinking the Ozone Problem in Urban and Regional Air Pollution (National Academy of Sciences, Washington, DC, 1991); U.S. Environmental Protection Agency, National Air Quality and Emissions Trends Report, 1995 (EPA454/R-96-005, 1996); B. J. Finlayson-Pitts and J. N. Pitts Jr., Science 276, 1045 (1997). The effect of aerosols on UV flux and photochemical ozone production near Earth's surface has generally been assumed to be small and negative, that is, the presence of aerosols reduces slightly the rate of smog formation [L. Zafonte, P. Rieger, J. Holmes, Environ. Sci. Technol. 11, 483 (1977); S. Liu, S. McKeen, S. Madronich, Geophys. Res. Lett. 18, 2265 (1991); Y. Lu and M. A. K. Khalil, Chemosphere 32, 739 (1996)]. Operation of many smog models, such as the Urban Airshed Models, is generally conducted without regard to the radiative effects of aerosols [U.S. Environmental Protection Agency, Guidelines for Regulatory Application of Urban Airshed Model (EPA-450/4-91-013, 1991); SAI, Users Guide to the Variable Grid Urban Airshed Model (UAM-V) (Systems Applications International, San Rafael, CA, 1995); R. Pielke et al., Meteorol. Atmos. Phys. 49, 69 (1992)].
    • (1996) National Air Quality and Emissions Trends Report, 1995
  • 4
    • 0030618076 scopus 로고    scopus 로고
    • Photochemical production of tropospheric ozone has been studied extensively [J. H. Seinfeld, Science 243, 745 (1989); National Academy of Sciences, Rethinking the Ozone Problem in Urban and Regional Air Pollution (National Academy of Sciences, Washington, DC, 1991); U.S. Environmental Protection Agency, National Air Quality and Emissions Trends Report, 1995 (EPA454/R-96-005, 1996); B. J. Finlayson-Pitts and J. N. Pitts Jr., Science 276, 1045 (1997). The effect of aerosols on UV flux and photochemical ozone production near Earth's surface has generally been assumed to be small and negative, that is, the presence of aerosols reduces slightly the rate of smog formation [L. Zafonte, P. Rieger, J. Holmes, Environ. Sci. Technol. 11, 483 (1977); S. Liu, S. McKeen, S. Madronich, Geophys. Res. Lett. 18, 2265 (1991); Y. Lu and M. A. K. Khalil, Chemosphere 32, 739 (1996)]. Operation of many smog models, such as the Urban Airshed Models, is generally conducted without regard to the radiative effects of aerosols [U.S. Environmental Protection Agency, Guidelines for Regulatory Application of Urban Airshed Model (EPA-450/4-91-013, 1991); SAI, Users Guide to the Variable Grid Urban Airshed Model (UAM-V) (Systems Applications International, San Rafael, CA, 1995); R. Pielke et al., Meteorol. Atmos. Phys. 49, 69 (1992)].
    • (1997) Science , vol.276 , pp. 1045
    • Finlayson-Pitts, B.J.1    Pitts Jr., J.N.2
  • 5
    • 0017489249 scopus 로고
    • Photochemical production of tropospheric ozone has been studied extensively [J. H. Seinfeld, Science 243, 745 (1989); National Academy of Sciences, Rethinking the Ozone Problem in Urban and Regional Air Pollution (National Academy of Sciences, Washington, DC, 1991); U.S. Environmental Protection Agency, National Air Quality and Emissions Trends Report, 1995 (EPA454/R-96-005, 1996); B. J. Finlayson-Pitts and J. N. Pitts Jr., Science 276, 1045 (1997). The effect of aerosols on UV flux and photochemical ozone production near Earth's surface has generally been assumed to be small and negative, that is, the presence of aerosols reduces slightly the rate of smog formation [L. Zafonte, P. Rieger, J. Holmes, Environ. Sci. Technol. 11, 483 (1977); S. Liu, S. McKeen, S. Madronich, Geophys. Res. Lett. 18, 2265 (1991); Y. Lu and M. A. K. Khalil, Chemosphere 32, 739 (1996)]. Operation of many smog models, such as the Urban Airshed Models, is generally conducted without regard to the radiative effects of aerosols [U.S. Environmental Protection Agency, Guidelines for Regulatory Application of Urban Airshed Model (EPA-450/4-91-013, 1991); SAI, Users Guide to the Variable Grid Urban Airshed Model (UAM-V) (Systems Applications International, San Rafael, CA, 1995); R. Pielke et al., Meteorol. Atmos. Phys. 49, 69 (1992)].
    • (1977) Environ. Sci. Technol. , vol.11 , pp. 483
    • Zafonte, L.1    Rieger, P.2    Holmes, J.3
  • 6
    • 0026299543 scopus 로고
    • Photochemical production of tropospheric ozone has been studied extensively [J. H. Seinfeld, Science 243, 745 (1989); National Academy of Sciences, Rethinking the Ozone Problem in Urban and Regional Air Pollution (National Academy of Sciences, Washington, DC, 1991); U.S. Environmental Protection Agency, National Air Quality and Emissions Trends Report, 1995 (EPA454/R-96-005, 1996); B. J. Finlayson-Pitts and J. N. Pitts Jr., Science 276, 1045 (1997). The effect of aerosols on UV flux and photochemical ozone production near Earth's surface has generally been assumed to be small and negative, that is, the presence of aerosols reduces slightly the rate of smog formation [L. Zafonte, P. Rieger, J. Holmes, Environ. Sci. Technol. 11, 483 (1977); S. Liu, S. McKeen, S. Madronich, Geophys. Res. Lett. 18, 2265 (1991); Y. Lu and M. A. K. Khalil, Chemosphere 32, 739 (1996)]. Operation of many smog models, such as the Urban Airshed Models, is generally conducted without regard to the radiative effects of aerosols [U.S. Environmental Protection Agency, Guidelines for Regulatory Application of Urban Airshed Model (EPA-450/4-91-013, 1991); SAI, Users Guide to the Variable Grid Urban Airshed Model (UAM-V) (Systems Applications International, San Rafael, CA, 1995); R. Pielke et al., Meteorol. Atmos. Phys. 49, 69 (1992)].
    • (1991) Geophys. Res. Lett. , vol.18 , pp. 2265
    • Liu, S.1    McKeen, S.2    Madronich, S.3
  • 7
    • 0029668150 scopus 로고    scopus 로고
    • Photochemical production of tropospheric ozone has been studied extensively [J. H. Seinfeld, Science 243, 745 (1989); National Academy of Sciences, Rethinking the Ozone Problem in Urban and Regional Air Pollution (National Academy of Sciences, Washington, DC, 1991); U.S. Environmental Protection Agency, National Air Quality and Emissions Trends Report, 1995 (EPA454/R-96-005, 1996); B. J. Finlayson-Pitts and J. N. Pitts Jr., Science 276, 1045 (1997). The effect of aerosols on UV flux and photochemical ozone production near Earth's surface has generally been assumed to be small and negative, that is, the presence of aerosols reduces slightly the rate of smog formation [L. Zafonte, P. Rieger, J. Holmes, Environ. Sci. Technol. 11, 483 (1977); S. Liu, S. McKeen, S. Madronich, Geophys. Res. Lett. 18, 2265 (1991); Y. Lu and M. A. K. Khalil, Chemosphere 32, 739 (1996)]. Operation of many smog models, such as the Urban Airshed Models, is generally conducted without regard to the radiative effects of aerosols [U.S. Environmental Protection Agency, Guidelines for Regulatory Application of Urban Airshed Model (EPA-450/4-91-013, 1991); SAI, Users Guide to the Variable Grid Urban Airshed Model (UAM-V) (Systems Applications International, San Rafael, CA, 1995); R. Pielke et al., Meteorol. Atmos. Phys. 49, 69 (1992)].
    • (1996) Chemosphere , vol.32 , pp. 739
    • Lu, Y.1    Khalil, M.A.K.2
  • 8
    • 0024544076 scopus 로고    scopus 로고
    • EPA-450/4-91-013
    • Photochemical production of tropospheric ozone has been studied extensively [J. H. Seinfeld, Science 243, 745 (1989); National Academy of Sciences, Rethinking the Ozone Problem in Urban and Regional Air Pollution (National Academy of Sciences, Washington, DC, 1991); U.S. Environmental Protection Agency, National Air Quality and Emissions Trends Report, 1995 (EPA454/R-96-005, 1996); B. J. Finlayson-Pitts and J. N. Pitts Jr., Science 276, 1045 (1997). The effect of aerosols on UV flux and photochemical ozone production near Earth's surface has generally been assumed to be small and negative, that is, the presence of aerosols reduces slightly the rate of smog formation [L. Zafonte, P. Rieger, J. Holmes, Environ. Sci. Technol. 11, 483 (1977); S. Liu, S. McKeen, S. Madronich, Geophys. Res. Lett. 18, 2265 (1991); Y. Lu and M. A. K. Khalil, Chemosphere 32, 739 (1996)]. Operation of many smog models, such as the Urban Airshed Models, is generally conducted without regard to the radiative effects of aerosols [U.S. Environmental Protection Agency, Guidelines for Regulatory Application of Urban Airshed Model (EPA-450/4-91-013, 1991); SAI, Users Guide to the Variable Grid Urban Airshed Model (UAM-V) (Systems Applications International, San Rafael, CA, 1995); R. Pielke et al., Meteorol. Atmos. Phys. 49, 69 (1992)].
    • (1991) Guidelines for Regulatory Application of Urban Airshed Model
  • 9
    • 0024544076 scopus 로고    scopus 로고
    • Systems Applications International, San Rafael, CA
    • Photochemical production of tropospheric ozone has been studied extensively [J. H. Seinfeld, Science 243, 745 (1989); National Academy of Sciences, Rethinking the Ozone Problem in Urban and Regional Air Pollution (National Academy of Sciences, Washington, DC, 1991); U.S. Environmental Protection Agency, National Air Quality and Emissions Trends Report, 1995 (EPA454/R-96-005, 1996); B. J. Finlayson-Pitts and J. N. Pitts Jr., Science 276, 1045 (1997). The effect of aerosols on UV flux and photochemical ozone production near Earth's surface has generally been assumed to be small and negative, that is, the presence of aerosols reduces slightly the rate of smog formation [L. Zafonte, P. Rieger, J. Holmes, Environ. Sci. Technol. 11, 483 (1977); S. Liu, S. McKeen, S. Madronich, Geophys. Res. Lett. 18, 2265 (1991); Y. Lu and M. A. K. Khalil, Chemosphere 32, 739 (1996)]. Operation of many smog models, such as the Urban Airshed Models, is generally conducted without regard to the radiative effects of aerosols [U.S. Environmental Protection Agency, Guidelines for Regulatory Application of Urban Airshed Model (EPA-450/4-91-013, 1991); SAI, Users Guide to the Variable Grid Urban Airshed Model (UAM-V) (Systems Applications International, San Rafael, CA, 1995); R. Pielke et al., Meteorol. Atmos. Phys. 49, 69 (1992)].
    • (1995) Users Guide to the Variable Grid Urban Airshed Model (UAM-V)
  • 10
    • 34249834317 scopus 로고
    • Photochemical production of tropospheric ozone has been studied extensively [J. H. Seinfeld, Science 243, 745 (1989); National Academy of Sciences, Rethinking the Ozone Problem in Urban and Regional Air Pollution (National Academy of Sciences, Washington, DC, 1991); U.S. Environmental Protection Agency, National Air Quality and Emissions Trends Report, 1995 (EPA454/R-96-005, 1996); B. J. Finlayson-Pitts and J. N. Pitts Jr., Science 276, 1045 (1997). The effect of aerosols on UV flux and photochemical ozone production near Earth's surface has generally been assumed to be small and negative, that is, the presence of aerosols reduces slightly the rate of smog formation [L. Zafonte, P. Rieger, J. Holmes, Environ. Sci. Technol. 11, 483 (1977); S. Liu, S. McKeen, S. Madronich, Geophys. Res. Lett. 18, 2265 (1991); Y. Lu and M. A. K. Khalil, Chemosphere 32, 739 (1996)]. Operation of many smog models, such as the Urban Airshed Models, is generally conducted without regard to the radiative effects of aerosols [U.S. Environmental Protection Agency, Guidelines for Regulatory Application of Urban Airshed Model (EPA-450/4-91-013, 1991); SAI, Users Guide to the Variable Grid Urban Airshed Model (UAM-V) (Systems Applications International, San Rafael, CA, 1995); R. Pielke et al., Meteorol. Atmos. Phys. 49, 69 (1992)].
    • (1992) Meteorol. Atmos. Phys. , vol.49 , pp. 69
    • Pielke, R.1
  • 11
    • 0017080121 scopus 로고
    • Photochemical reactions progress at a rate that depends on the intensity of radiation. For any particular species, the photolysis rate coefficient can be calculated by integrating the product of the actinic flux, the quantum yield, and the absorption cross section with respect to wavelength. This coefficient can also be measured directly with a chemical actinometer. See, for example, J. Peterson and K. Demerjian, Atmos. Environ. 10, 459 (1976); J. Peterson, ibid. 11, 689 (1977); R. Dickerson, D. Stedman, A. Delany, J. Geophys. Res. 87, 4933 (1982); T. Blackburn, S. Bairai, D. Stedman, ibid. 97, 10109 (1992); A. Ruggaber, R. Dlugi, T. Nakajima, J. Atmos. Chem. 18, 171 (1994); C. Blindauer, V. Rozanov, J. Burrows, ibid. 24, 1 (1996).
    • (1976) Atmos. Environ. , vol.10 , pp. 459
    • Peterson, J.1    Demerjian, K.2
  • 12
    • 0017757002 scopus 로고
    • Photochemical reactions progress at a rate that depends on the intensity of radiation. For any particular species, the photolysis rate coefficient can be calculated by integrating the product of the actinic flux, the quantum yield, and the absorption cross section with respect to wavelength. This coefficient can also be measured directly with a chemical actinometer. See, for example, J. Peterson and K. Demerjian, Atmos. Environ. 10, 459 (1976); J. Peterson, ibid. 11, 689 (1977); R. Dickerson, D. Stedman, A. Delany, J. Geophys. Res. 87, 4933 (1982); T. Blackburn, S. Bairai, D. Stedman, ibid. 97, 10109 (1992); A. Ruggaber, R. Dlugi, T. Nakajima, J. Atmos. Chem. 18, 171 (1994); C. Blindauer, V. Rozanov, J. Burrows, ibid. 24, 1 (1996).
    • (1977) Atmos. Environ. , vol.11 , pp. 689
    • Peterson, J.1
  • 13
    • 0020401378 scopus 로고
    • Photochemical reactions progress at a rate that depends on the intensity of radiation. For any particular species, the photolysis rate coefficient can be calculated by integrating the product of the actinic flux, the quantum yield, and the absorption cross section with respect to wavelength. This coefficient can also be measured directly with a chemical actinometer. See, for example, J. Peterson and K. Demerjian, Atmos. Environ. 10, 459 (1976); J. Peterson, ibid. 11, 689 (1977); R. Dickerson, D. Stedman, A. Delany, J. Geophys. Res. 87, 4933 (1982); T. Blackburn, S. Bairai, D. Stedman, ibid. 97, 10109 (1992); A. Ruggaber, R. Dlugi, T. Nakajima, J. Atmos. Chem. 18, 171 (1994); C. Blindauer, V. Rozanov, J. Burrows, ibid. 24, 1 (1996).
    • (1982) J. Geophys. Res. , vol.87 , pp. 4933
    • Dickerson, R.1    Stedman, D.2    Delany, A.3
  • 14
    • 0027086759 scopus 로고
    • Photochemical reactions progress at a rate that depends on the intensity of radiation. For any particular species, the photolysis rate coefficient can be calculated by integrating the product of the actinic flux, the quantum yield, and the absorption cross section with respect to wavelength. This coefficient can also be measured directly with a chemical actinometer. See, for example, J. Peterson and K. Demerjian, Atmos. Environ. 10, 459 (1976); J. Peterson, ibid. 11, 689 (1977); R. Dickerson, D. Stedman, A. Delany, J. Geophys. Res. 87, 4933 (1982); T. Blackburn, S. Bairai, D. Stedman, ibid. 97, 10109 (1992); A. Ruggaber, R. Dlugi, T. Nakajima, J. Atmos. Chem. 18, 171 (1994); C. Blindauer, V. Rozanov, J. Burrows, ibid. 24, 1 (1996).
    • (1992) J. Geophys. Res. , vol.97 , pp. 10109
    • Blackburn, T.1    Bairai, S.2    Stedman, D.3
  • 15
    • 0028159536 scopus 로고
    • Photochemical reactions progress at a rate that depends on the intensity of radiation. For any particular species, the photolysis rate coefficient can be calculated by integrating the product of the actinic flux, the quantum yield, and the absorption cross section with respect to wavelength. This coefficient can also be measured directly with a chemical actinometer. See, for example, J. Peterson and K. Demerjian, Atmos. Environ. 10, 459 (1976); J. Peterson, ibid. 11, 689 (1977); R. Dickerson, D. Stedman, A. Delany, J. Geophys. Res. 87, 4933 (1982); T. Blackburn, S. Bairai, D. Stedman, ibid. 97, 10109 (1992); A. Ruggaber, R. Dlugi, T. Nakajima, J. Atmos. Chem. 18, 171 (1994); C. Blindauer, V. Rozanov, J. Burrows, ibid. 24, 1 (1996).
    • (1994) J. Atmos. Chem. , vol.18 , pp. 171
    • Ruggaber, A.1    Dlugi, R.2    Nakajima, T.3
  • 16
    • 0029663017 scopus 로고    scopus 로고
    • Photochemical reactions progress at a rate that depends on the intensity of radiation. For any particular species, the photolysis rate coefficient can be calculated by integrating the product of the actinic flux, the quantum yield, and the absorption cross section with respect to wavelength. This coefficient can also be measured directly with a chemical actinometer. See, for example, J. Peterson and K. Demerjian, Atmos. Environ. 10, 459 (1976); J. Peterson, ibid. 11, 689 (1977); R. Dickerson, D. Stedman, A. Delany, J. Geophys. Res. 87, 4933 (1982); T. Blackburn, S. Bairai, D. Stedman, ibid. 97, 10109 (1992); A. Ruggaber, R. Dlugi, T. Nakajima, J. Atmos. Chem. 18, 171 (1994); C. Blindauer, V. Rozanov, J. Burrows, ibid. 24, 1 (1996).
    • (1996) J. Atmos. Chem. , vol.24 , pp. 1
    • Blindauer, C.1    Rozanov, V.2    Burrows, J.3
  • 18
    • 0026488636 scopus 로고    scopus 로고
    • o is the same radiance under an aerosol-free atmosphere. When τ equals or exceeds unity, the atmosphere is said to be optically thick [R. J. Charlson et al., Science 255, 423 (1992); J. T. Kiehl and B. P. Briegleb, ibid. 260, 311 (1993); J. T. Houghton et al., Climate Change 1995: The Science of Climate Change (Cambridge Univ. Press, Cambridge, 1996)].
    • (1992) Science , vol.255 , pp. 423
    • Charlson, R.J.1
  • 19
    • 0027580056 scopus 로고
    • o is the same radiance under an aerosol-free atmosphere. When τ equals or exceeds unity, the atmosphere is said to be optically thick [R. J. Charlson et al., Science 255, 423 (1992); J. T. Kiehl and B. P. Briegleb, ibid. 260, 311 (1993); J. T. Houghton et al., Climate Change 1995: The Science of Climate Change (Cambridge Univ. Press, Cambridge, 1996)].
    • (1993) Science , vol.260 , pp. 311
    • Kiehl, J.T.1    Briegleb, B.P.2
  • 20
    • 0026488636 scopus 로고    scopus 로고
    • Cambridge Univ. Press, Cambridge
    • o is the same radiance under an aerosol-free atmosphere. When τ equals or exceeds unity, the atmosphere is said to be optically thick [R. J. Charlson et al., Science 255, 423 (1992); J. T. Kiehl and B. P. Briegleb, ibid. 260, 311 (1993); J. T. Houghton et al., Climate Change 1995: The Science of Climate Change (Cambridge Univ. Press, Cambridge, 1996)].
    • (1996) Climate Change 1995: The Science of Climate Change
    • Houghton, J.T.1
  • 23
    • 0029507062 scopus 로고
    • The photolysis rate coefficients presented here were determined with an instrument described by P. Kelley, R. Dickerson, W. Luke, and G. Kok [Geophys. Res. Lett. 22 (no. 19), 2621 (1995)]. Most natural surfaces (except snow) reflect 8% or less of incident UV irradiance. For these measurements, a black surface was placed below the actinometer to ensure a constant and known local albedo, ensuring that radiation was measured only from the downwelling 2 π steradians. This device has an absolute uncertainty of about 7% at the 95% confidence level for zenith angles less than 60°; the precision is a few percent.
    • (1995) Geophys. Res. Lett. , vol.22 , Issue.19 , pp. 2621
    • Kelley, P.1    Dickerson, R.2    Luke, W.3    Kok, G.4
  • 24
    • 1842333727 scopus 로고    scopus 로고
    • thesis, University of Maryland, College Park, MD
    • K. L. Civerolo, thesis, University of Maryland, College Park, MD (1996); W. Ryan, B. Doddridge, R. Dickerson, K. Hallock, J. Air Waste Manage. Assoc., in press.
    • (1996)
    • Civerolo, K.L.1
  • 26
    • 0028569987 scopus 로고    scopus 로고
    • The instruments monitor direct solar radiation and sky radiance at the almucanter (on the celestial circle parallel to the horizon and at the same zenith angle as the sun) and principal plane (the plane perpendicular to the horizon through the apparent position of the sun) [Y. Kaufman et al., J. Geophys. Res. 99, 10341 (1994); T. Nakajima et al., Appl. Opt. 35, 2672 (1996); B. N. Holben et al., Sixth International Symposium of Physical Measurements and Signatures in Remote Sensing, Val D'Isere, France, 17 to 21 January 1994 (Center National d'Etudes Spatiales, Toulouse, France, 1997), pp. 75-83; L. Remer, S. Gasso, D. Hegg, Y. Kaufman, B. Holben, J. Geophys. Res., 102, 16849 (1997).
    • (1994) J. Geophys. Res. , vol.99 , pp. 10341
    • Kaufman, Y.1
  • 27
    • 6244260108 scopus 로고    scopus 로고
    • The instruments monitor direct solar radiation and sky radiance at the almucanter (on the celestial circle parallel to the horizon and at the same zenith angle as the sun) and principal plane (the plane perpendicular to the horizon through the apparent position of the sun) [Y. Kaufman et al., J. Geophys. Res. 99, 10341 (1994); T. Nakajima et al., Appl. Opt. 35, 2672 (1996); B. N. Holben et al., Sixth International Symposium of Physical Measurements and Signatures in Remote Sensing, Val D'Isere, France, 17 to 21 January 1994 (Center National d'Etudes Spatiales, Toulouse, France, 1997), pp. 75-83; L. Remer, S. Gasso, D. Hegg, Y. Kaufman, B. Holben, J. Geophys. Res., 102, 16849 (1997).
    • (1996) Appl. Opt. , vol.35 , pp. 2672
    • Nakajima, T.1
  • 28
    • 0028569987 scopus 로고    scopus 로고
    • Val D'Isere, France, 17 to 21 January 1994 Center National d'Etudes Spatiales, Toulouse, France
    • The instruments monitor direct solar radiation and sky radiance at the almucanter (on the celestial circle parallel to the horizon and at the same zenith angle as the sun) and principal plane (the plane perpendicular to the horizon through the apparent position of the sun) [Y. Kaufman et al., J. Geophys. Res. 99, 10341 (1994); T. Nakajima et al., Appl. Opt. 35, 2672 (1996); B. N. Holben et al., Sixth International Symposium of Physical Measurements and Signatures in Remote Sensing, Val D'Isere, France, 17 to 21 January 1994 (Center National d'Etudes Spatiales, Toulouse, France, 1997), pp. 75-83; L. Remer, S. Gasso, D. Hegg, Y. Kaufman, B. Holben, J. Geophys. Res., 102, 16849 (1997).
    • (1997) Sixth International Symposium of Physical Measurements and Signatures in Remote Sensing , pp. 75-83
    • Holben, B.N.1
  • 29
    • 0031396071 scopus 로고    scopus 로고
    • The instruments monitor direct solar radiation and sky radiance at the almucanter (on the celestial circle parallel to the horizon and at the same zenith angle as the sun) and principal plane (the plane perpendicular to the horizon through the apparent position of the sun) [Y. Kaufman et al., J. Geophys. Res. 99, 10341 (1994); T. Nakajima et al., Appl. Opt. 35, 2672 (1996); B. N. Holben et al., Sixth International Symposium of Physical Measurements and Signatures in Remote Sensing, Val D'Isere, France, 17 to 21 January 1994 (Center National d'Etudes Spatiales, Toulouse, France, 1997), pp. 75-83; L. Remer, S. Gasso, D. Hegg, Y. Kaufman, B. Holben, J. Geophys. Res., 102, 16849 (1997).
    • (1997) J. Geophys. Res. , vol.102 , pp. 16849
    • Remer, L.1    Gasso, S.2    Hegg, D.3    Kaufman, Y.4    Holben, B.5
  • 30
    • 0014638770 scopus 로고
    • E. Flowers, R. McCormick, K. Kurfis, J. Appl. Meteorol. 8, 955 (1969); J. Peterson, E. Flowers, G. J. Berri, C. L. Reynolds, J. H. Rudisill, ibid. 20, 229 (1981); R. B. Husar, J. M. Holloway, D. E. Patterson, W. E. Wilson, Atmos. Environ. 15, 1919 (1981); Y. Kaufman and R. S. Fraser, J. Appl. Meteorol. 22, 1694 (1983); R. B. Husar and W. E. Wilson, Environ. Sci. Technol. 27, 12 (1993).
    • (1969) J. Appl. Meteorol. , vol.8 , pp. 955
    • Flowers, E.1    McCormick, R.2    Kurfis, K.3
  • 31
    • 0019685855 scopus 로고
    • E. Flowers, R. McCormick, K. Kurfis, J. Appl. Meteorol. 8, 955 (1969); J. Peterson, E. Flowers, G. J. Berri, C. L. Reynolds, J. H. Rudisill, ibid. 20, 229 (1981); R. B. Husar, J. M. Holloway, D. E. Patterson, W. E. Wilson, Atmos. Environ. 15, 1919 (1981); Y. Kaufman and R. S. Fraser, J. Appl. Meteorol. 22, 1694 (1983); R. B. Husar and W. E. Wilson, Environ. Sci. Technol. 27, 12 (1993).
    • (1981) J. Appl. Meteorol. , vol.20 , pp. 229
    • Peterson, J.1    Flowers, E.2    Berri, G.J.3    Reynolds, C.L.4    Rudisill, J.H.5
  • 32
    • 0019853605 scopus 로고
    • E. Flowers, R. McCormick, K. Kurfis, J. Appl. Meteorol. 8, 955 (1969); J. Peterson, E. Flowers, G. J. Berri, C. L. Reynolds, J. H. Rudisill, ibid. 20, 229 (1981); R. B. Husar, J. M. Holloway, D. E. Patterson, W. E. Wilson, Atmos. Environ. 15, 1919 (1981); Y. Kaufman and R. S. Fraser, J. Appl. Meteorol. 22, 1694 (1983); R. B. Husar and W. E. Wilson, Environ. Sci. Technol. 27, 12 (1993).
    • (1981) Atmos. Environ. , vol.15 , pp. 1919
    • Husar, R.B.1    Holloway, J.M.2    Patterson, D.E.3    Wilson, W.E.4
  • 33
    • 0020841490 scopus 로고
    • E. Flowers, R. McCormick, K. Kurfis, J. Appl. Meteorol. 8, 955 (1969); J. Peterson, E. Flowers, G. J. Berri, C. L. Reynolds, J. H. Rudisill, ibid. 20, 229 (1981); R. B. Husar, J. M. Holloway, D. E. Patterson, W. E. Wilson, Atmos. Environ. 15, 1919 (1981); Y. Kaufman and R. S. Fraser, J. Appl. Meteorol. 22, 1694 (1983); R. B. Husar and W. E. Wilson, Environ. Sci. Technol. 27, 12 (1993).
    • (1983) J. Appl. Meteorol. , vol.22 , pp. 1694
    • Kaufman, Y.1    Fraser, R.S.2
  • 34
    • 0027334962 scopus 로고
    • E. Flowers, R. McCormick, K. Kurfis, J. Appl. Meteorol. 8, 955 (1969); J. Peterson, E. Flowers, G. J. Berri, C. L. Reynolds, J. H. Rudisill, ibid. 20, 229 (1981); R. B. Husar, J. M. Holloway, D. E. Patterson, W. E. Wilson, Atmos. Environ. 15, 1919 (1981); Y. Kaufman and R. S. Fraser, J. Appl. Meteorol. 22, 1694 (1983); R. B. Husar and W. E. Wilson, Environ. Sci. Technol. 27, 12 (1993).
    • (1993) Environ. Sci. Technol. , vol.27 , pp. 12
    • Husar, R.B.1    Wilson, W.E.2
  • 35
  • 36
    • 0030774936 scopus 로고    scopus 로고
    • x and NMHC emissions may not lead to proportionate reductions in particulate loading [J. R. Odum, T. P. W. Jungkamp, R. J. Griffin, R. C. Flagan, J. H. Seinfeld, Science 276, 96 (1997); Z. Meng, D. Dabdub, J. H. Seinfeld, ibid. 277, 116 (1997)].
    • (1997) Science , vol.277 , pp. 116
    • Meng, Z.1    Dabdub, D.2    Seinfeld, J.H.3
  • 42
    • 1842292600 scopus 로고    scopus 로고
    • thesis, University of Maryland, College Park, MD
    • S. Kondragunta, thesis, University of Maryland, College Park, MD (1997).
    • (1997)
    • Kondragunta, S.1
  • 43
    • 1842411720 scopus 로고
    • J. Lelieveld and P. J. Crutzen, Nature 343, 277 (1990); F. Dentener and P. Crutzen, J. Geophys. Res. 98 (no. 4), 7149 (1993); C. Walcek, H.-H. Yuan, W. Stockwell, Atmos. Environ. 31 (no. 8), 1221 (1997); J. Liang and D. Jacob, J. Geophys. Res. 102 (no. 5), 5993 (1997); M. Andreae and P. Crutzen, Science 276, 1052 (1997); A. R. Ravishankara, ibid., p. 1058.
    • (1990) Nature , vol.343 , pp. 277
    • Lelieveld, J.1    Crutzen, P.J.2
  • 44
    • 0027444140 scopus 로고
    • J. Lelieveld and P. J. Crutzen, Nature 343, 277 (1990); F. Dentener and P. Crutzen, J. Geophys. Res. 98 (no. 4), 7149 (1993); C. Walcek, H.-H. Yuan, W. Stockwell, Atmos. Environ. 31 (no. 8), 1221 (1997); J. Liang and D. Jacob, J. Geophys. Res. 102 (no. 5), 5993 (1997); M. Andreae and P. Crutzen, Science 276, 1052 (1997); A. R. Ravishankara, ibid., p. 1058.
    • (1993) J. Geophys. Res. , vol.98 , Issue.4 , pp. 7149
    • Dentener, F.1    Crutzen, P.2
  • 45
    • 0031107056 scopus 로고    scopus 로고
    • J. Lelieveld and P. J. Crutzen, Nature 343, 277 (1990); F. Dentener and P. Crutzen, J. Geophys. Res. 98 (no. 4), 7149 (1993); C. Walcek, H.-H. Yuan, W. Stockwell, Atmos. Environ. 31 (no. 8), 1221 (1997); J. Liang and D. Jacob, J. Geophys. Res. 102 (no. 5), 5993 (1997); M. Andreae and P. Crutzen, Science 276, 1052 (1997); A. R. Ravishankara, ibid., p. 1058.
    • (1997) Atmos. Environ. , vol.31 , Issue.8 , pp. 1221
    • Walcek, C.1    Yuan, H.-H.2    Stockwell, W.3
  • 46
    • 0345917121 scopus 로고    scopus 로고
    • J. Lelieveld and P. J. Crutzen, Nature 343, 277 (1990); F. Dentener and P. Crutzen, J. Geophys. Res. 98 (no. 4), 7149 (1993); C. Walcek, H.-H. Yuan, W. Stockwell, Atmos. Environ. 31 (no. 8), 1221 (1997); J. Liang and D. Jacob, J. Geophys. Res. 102 (no. 5), 5993 (1997); M. Andreae and P. Crutzen, Science 276, 1052 (1997); A. R. Ravishankara, ibid., p. 1058.
    • (1997) J. Geophys. Res. , vol.102 , Issue.5 , pp. 5993
    • Liang, J.1    Jacob, D.2
  • 47
    • 0030618083 scopus 로고    scopus 로고
    • J. Lelieveld and P. J. Crutzen, Nature 343, 277 (1990); F. Dentener and P. Crutzen, J. Geophys. Res. 98 (no. 4), 7149 (1993); C. Walcek, H.-H. Yuan, W. Stockwell, Atmos. Environ. 31 (no. 8), 1221 (1997); J. Liang and D. Jacob, J. Geophys. Res. 102 (no. 5), 5993 (1997); M. Andreae and P. Crutzen, Science 276, 1052 (1997); A. R. Ravishankara, ibid., p. 1058.
    • (1997) Science , vol.276 , pp. 1052
    • Andreae, M.1    Crutzen, P.2
  • 48
    • 1842416399 scopus 로고    scopus 로고
    • J. Lelieveld and P. J. Crutzen, Nature 343, 277 (1990); F. Dentener and P. Crutzen, J. Geophys. Res. 98 (no. 4), 7149 (1993); C. Walcek, H.-H. Yuan, W. Stockwell, Atmos. Environ. 31 (no. 8), 1221 (1997); J. Liang and D. Jacob, J. Geophys. Res. 102 (no. 5), 5993 (1997); M. Andreae and P. Crutzen, Science 276, 1052 (1997); A. R. Ravishankara, ibid., p. 1058.
    • Science , pp. 1058
    • Ravishankara, A.R.1
  • 50
    • 0031434733 scopus 로고    scopus 로고
    • D. Hauglustaine, B. Ridley, S. Solomon, P. Hess, S. Madronich, Geophys. Res. Lett. 23, 2609 (1996); D. Lary et al., J. Geophys. Res. 102, 3671 (1997).
    • (1997) J. Geophys. Res. , vol.102 , pp. 3671
    • Lary, D.1
  • 51
    • 0029750785 scopus 로고    scopus 로고
    • M. Naja and S. Lal, Geophys. Res. Lett. 23, 81 (1996); C. Varshney and M. Aggarwal, Atmos. Environ. 26, 291 (1992); J. Herman et al., J. Geophys. Res. 102, 16911 (1997); K. Rhoads et al., ibid., p. 18981.
    • (1996) Geophys. Res. Lett. , vol.23 , pp. 81
    • Naja, M.1    Lal, S.2
  • 52
    • 0027039867 scopus 로고
    • M. Naja and S. Lal, Geophys. Res. Lett. 23, 81 (1996); C. Varshney and M. Aggarwal, Atmos. Environ. 26, 291 (1992); J. Herman et al., J. Geophys. Res. 102, 16911 (1997); K. Rhoads et al., ibid., p. 18981.
    • (1992) Atmos. Environ. , vol.26 , pp. 291
    • Varshney, C.1    Aggarwal, M.2
  • 53
    • 0000170342 scopus 로고    scopus 로고
    • M. Naja and S. Lal, Geophys. Res. Lett. 23, 81 (1996); C. Varshney and M. Aggarwal, Atmos. Environ. 26, 291 (1992); J. Herman et al., J. Geophys. Res. 102, 16911 (1997); K. Rhoads et al., ibid., p. 18981.
    • (1997) J. Geophys. Res. , vol.102 , pp. 16911
    • Herman, J.1
  • 54
    • 0029750785 scopus 로고    scopus 로고
    • M. Naja and S. Lal, Geophys. Res. Lett. 23, 81 (1996); C. Varshney and M. Aggarwal, Atmos. Environ. 26, 291 (1992); J. Herman et al., J. Geophys. Res. 102, 16911 (1997); K. Rhoads et al., ibid., p. 18981.
    • J. Geophys. Res. , pp. 18981
    • Rhoads, K.1
  • 55
    • 1842330725 scopus 로고    scopus 로고
    • note
    • We thank P. Crutzen, Y. Kaufman, I. Laszlo, and W. Ryan for helpful comments. Supported by Electric Power Research Institute through the NARSTO-Northeast Program, by the National Science Foundation-funded Center for Clouds, Chemistry, and Climate, and by NASA EOS Interdisciplinary Science Investigation.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.