-
1
-
-
0004055235
-
-
3rd ed. (Holt, Rinehart, and Winston, New York
-
A. Yariv, Optical Electronics, 3rd ed. (Holt, Rinehart, and Winston, New York, 1985).
-
(1985)
Optical Electronics
-
-
Yariv, A.1
-
3
-
-
0032118097
-
Redshifting and broadening of quantum-well infrared photodetectors response via impurity-free vacancy disordering
-
D. Sengupta, V. Jandhyala, S. Kim, W. Fang, J. Malin, P. Apostolakis, K.-C. Hseih, Y.-C. Chang, S. L. Chuang, S. Bandara, S. Gunapala, M. Feng, E. Michielssen, and G. Stillman, “Redshifting and broadening of quantum-well infrared photodetector’s response via impurity-free vacancy disordering,”IEEE J. Sel. Top. Quantum Electron. 4, 746-757 (1998).
-
(1998)
IEEE J. Sel. Top. Quantum Electron.
, vol.4
, pp. 746-757
-
-
Sengupta, D.1
Jandhyala, V.2
Kim, S.3
Fang, W.4
Malin, J.5
Apostolakis, P.6
Hseih, K.-C.7
Chang, Y.-C.8
Chuang, S.L.9
Bandara, S.10
Gunapala, S.11
Feng, M.12
Michielssen, E.13
Stillman, G.14
-
4
-
-
0001191709
-
Optical actuation of micromechanical tunneling structures with applications in spectrum analyzing and optical computing
-
D. Dragoman and M. Dragoman, “Optical actuation of micromechanical tunneling structures with applications in spectrum analyzing and optical computing,” Appl. Opt. 38, 6773-6778 (1999).
-
(1999)
Appl. Opt.
, vol.38
, pp. 6773-6778
-
-
Dragoman, D.1
Dragoman, M.2
-
6
-
-
0024732784
-
An electron tunneling sensor
-
S. B. Waltman and W. J. Kaiser, “An electron tunneling sensor,” Sens. Actuators 19, 201-207 (1989).
-
(1989)
Sens. Actuators
, vol.19
, pp. 201-207
-
-
Waltman, S.B.1
Kaiser, W.J.2
-
8
-
-
0031488293
-
Optical actuation of micromechanical components
-
D. R. Koehler, “Optical actuation of micromechanical components,” J. Opt. Soc. Am. B 14, 2197-2203 (1997).
-
(1997)
J. Opt. Soc. Am. B
, vol.14
, pp. 2197-2203
-
-
Koehler, D.R.1
-
9
-
-
0032164880
-
The micromechanical tunneling transistor
-
M. A. McCord, A. Dana, and R. F. W. Pease, “The micromechanical tunneling transistor,” J. Micromech. Microeng. 8, 209-212 (1998).
-
(1998)
J. Micromech. Microeng.
, vol.8
, pp. 209-212
-
-
McCord, M.A.1
Dana, A.2
Pease, R.F.W.3
-
10
-
-
0032687004
-
Characterization of silicon cantilevers with integrated pyramidal metal tips in atomic force microscopy
-
B. Courtois, S. B. Crary, W. Ehrfeld, H. Fujita, J. M. Karam, and K. W. Markus, eds., Proc. SPIE 3680
-
T. Hantschel, R. Stephenson, T. Trenkler, P. de Wolf, and W. Vandervorst, “Characterization of silicon cantilevers with integrated pyramidal metal tips in atomic force microscopy,” in Design, Test, and Microfabrication ofMEMS andMOEMS,” B. Courtois, S. B. Crary, W. Ehrfeld, H. Fujita, J. M. Karam, and K. W. Markus, eds., Proc. SPIE 3680, 994-1005 (1999).
-
(1999)
Design, Test, and Microfabrication Ofmems Andmoems
, pp. 994-1005
-
-
Hantschel, T.1
Stephenson, R.2
Trenkler, T.3
De Wolf, P.4
Vandervorst, W.5
-
11
-
-
0032659162
-
Micromachines for nanoscale science and technology
-
M. Hoummady and H. Fujita, “Micromachines for nanoscale science and technology,” Nanotechnology 10, 29-33 (1999).
-
(1999)
Nanotechnology
, vol.10
, pp. 29-33
-
-
Hoummady, M.1
Fujita, H.2
-
12
-
-
0029288547
-
Ytterbium-doped silica fiber lasers: Versatile sources for the 1-1.2 p, m region
-
H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 p, m region,” IEEE J. Sel. Top. Quantum Electron. 1, 2-13 (1995).
-
(1995)
IEEE J. Sel. Top. Quantum Electron.
, vol.1
, pp. 2-13
-
-
Pask, H.M.1
Carman, R.J.2
Hanna, D.C.3
Tropper, A.C.4
Mackechnie, C.J.5
Barber, P.R.6
Dawes, J.M.7
-
13
-
-
0029292827
-
Widely tunable polarization-stable fiber lasers
-
D. G. Cooper, J. L. Dexter, and R. D. Esman, “Widely tunable polarization-stable fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 1, 14-21 (1995).
-
(1995)
IEEE J. Sel. Top. Quantum Electron.
, vol.1
, pp. 14-21
-
-
Cooper, D.G.1
Dexter, J.L.2
Esman, R.D.3
-
17
-
-
0029368420
-
High-gain hollow-cathode metal ion lasers for the UV and VUV
-
R. C. Tobin, K. A. Peard, G. H. Bode, K. Rozsa, Z. Donko, and L. Szalai, “High-gain hollow-cathode metal ion lasers for the UV and VUV,” IEEE J. Sel. Top. Quantum Electron. 1, 805-810 (1995).
-
(1995)
IEEE J. Sel. Top. Quantum Electron.
, vol.1
, pp. 805-810
-
-
Tobin, R.C.1
Peard, K.A.2
Bode, G.H.3
Rozsa, K.4
Donko, Z.5
Szalai, L.6
-
19
-
-
0029371120
-
Production of high average power UV by second-harmonic and sum-frequency generation from copper-vapor lasers
-
D. W. Coutts and D. J. W. Brown, “Production of high average power UV by second-harmonic and sum-frequency generation from copper-vapor lasers,” IEEE J. Sel. Top. Quantum Electron. 1, 768-778 (1995).
-
(1995)
IEEE J. Sel. Top. Quantum Electron.
, vol.1
, pp. 768-778
-
-
Coutts, D.W.1
Brown, D.J.W.2
-
20
-
-
0029370702
-
All solid-state continuous-wave frequency-quadrupled Nd: YAG laser
-
M. Oka, L. Y. Liu, W. Wiechmann, N. Eguchi, and S. Kubota, “All solid-state continuous-wave frequency-quadrupled Nd: YAG laser,” IEEE J. Sel. Top. Quantum Electron. 1, 859-866(1995).
-
(1995)
IEEE J. Sel. Top. Quantum Electron.
, vol.1
, pp. 859-866
-
-
Oka, M.1
Liu, L.Y.2
Wiechmann, W.3
Eguchi, N.4
Kubota, S.5
|